

K.R. MANGALAM UNIVERSITY THE COMPLETE WORLD OF EDUCATION

SCHOOL OF BASIC AND APPLIED SCIENCES

Bachelor of Science (Honours) Chemistry

B.Sc. (Hons.) Chemistry

Programme Code: 10

2021-24

Approved in the 26th Meeting of Academic Council Held on 11 August 2021

Registrar K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

SCHOOL OF BASIC AND APPLIED SCIENCES

Bachelor of Science (Honours) Chemistry

B.Sc. (Hons.) Chemistry

Programme Code: 10

2021-24

Approved in the 26th Meeting of Academic Council Held on 11 August 2021

S. No.	Content	Page No.
1.	Introduction	2
2.	About School	3
3.	Programs offered by the school	3
4.	B.Sc. (Hons.) Chemistry	4
5.	Program Duration	5
6.	Class Timings	5
7.	Scheme of Studies	5-13
8.	Syllabus of B.Sc. (Hons.) Chemistry	14-231

PREAMBLE

The objective of any programme at the Higher Education Institute is to prepare their students for the society at large. The K. R. Mangalam University visualizes all its programmes in the best interest of their students and in this endeavour; it offers a new vision to all its Under-Graduate courses. It imbibes a Learning Outcome-based Curriculum Framework (LOCF) for all its Undergraduate programmes. The LOCF approach is envisioned to provide a focused, outcome-based syllabus at the undergraduate level with an agenda to structure the teaching-learning experiences in a more student-centric manner. The LOCF approach has been adopted to strengthen students' experiences as they engage themselves in the programme of their choice. The Under-Graduate Programmes will prepare the students for both, academia and employability. The programmes also state the attributes that it offers to inculcate at the graduation level. The graduate attributes encompass values related to emotional stability, well-being, critical thinking and skills for employability.

The new curriculum of B.Sc. (Hons) Chemistry offer courses in the areas of inorganic, organic, physical, materials and analytical. All the courses have defined objectives and Learning Outcomes, which will help prospective students in choosing the elective courses to broaden their skills in the field of chemistry and interdisciplinary areas. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. The courses also offer ample skills to pursue research such as career in the field of chemistry and allied areas. The K. R. Mangalam University hopes the LOCF approach of the programme B.Sc. (Hons) Chemistry will help students in making an informed decision regarding the goals that they wish to pursue in further education and life, at large.

Prepared by:

Dr. Meena Bhandari Associate Professor

Dr Seema Raj Assistant Professor Dr Chandra Mohan Assistant Professor Dr Neeraj Kumari Assistant Professor

Dr Suman Srivastava Assistant Professor

1. Introduction

K.R. Mangalam University located on Sohna Road, Gurugram, is one of the fastest growing and most promising upcoming universities in India. It is a State Private University established in 2013 by an act of the legislature of the Haryana Government under Haryana Private Universities Act (Amendment) 8 of 2013. It is recognized by the UGC under Section 2f of the UGC Act, 1956. The primary aim of the University is to promote excellence in basic and professional education while upholding moral values.

KRMU offers sixty-eight Undergraduate, Postgraduate and Doctoral Degree programs across different disciplines. The group of educational units in the University promotes education in the areas of Engineering& Technology, Legal Studies, Basic and Applied Sciences, Management Sciences, Commerce, Journalism and Mass Communication, Hotel Management and Catering Technology, Medical and Allied Sciences, Architecture and Planning, Agriculture, Fashion Designing, Humanities and Education. All the disciplines follow a well-defined curriculum design keeping in view the guidelines of UGC/AICTE and appropriate regulatory bodies like Council of Architecture (COA), Bar Council of India (BCI), Pharmacy Council of India (PCI), National Council for Teachers Education (NCTE) etc., wherever applicable. All courses are semester and credit based.

K. R. Mangalam University is unique because of its

• An enduring legacy of providing education to high achievers who demonstrate leadership in diverse fields.

• Protective and nurturing environment for teaching, research, creativity, scholarship, social and economic justice.

Objectives

i.To impart undergraduate, post-graduate and Doctoral education in identified areas of higher education.

ii. To undertake research programmes with industrial interface.

iii. To integrate its growth with the global needs and expectations of the major stake holders through teaching, research, exchange & collaborative programmes with foreign, Indian Universities/Institutions and MNCs.

iv. To act as a nodal center for transfer of technology to the industry

v. To provide job oriented professional education to the pecia student community with particular focus on Haryana.

2. About the School

The school imparts both teaching and research through its various science disciplines viz Mathematics, Chemistry and Physics. School of Basic and Applied Sciences imparts students disciplinary knowledge, enhances their skills and ability, motivating them to think ingeniously, helping them to act independently and take decisions accordingly in all their scientific pursuits and other endeavors. It strives to empower its students and faculty members to contribute for the development of society and Nation.

The faculty is in constant touch with various experts in the relevant fields and is willing to experiment with latest ideas in teaching and research.

VISION

School of Basic and Applied Sciences intends for continuum growth as centre of advanced learning, research and innovation by disseminating analytical and scientific knowledge in the areas of basic and applied sciences by promoting interdisciplinary research and scientific acumen.

MISSION

M1: Enable students to be scientists/ academicians /entrepreneurs by accomplishing fundamental and advanced research in diverse areas of basic and applied sciences.

M2: Build strong associations with academic organizations/industries for knowledge creation, advancement, and application of scientific fervor.

M3: Create conducive environment for lifelong learning.

M4: Empower students to be socially responsible and ethically strong individuals through value-based science education.

3. Programmes offered by the school

School offers undergraduate B.Sc. (Hons) Programmes, postgraduate M.Sc. Programmes, and Doctoral Programmes. All these programmes are designed to impart scientific knowledge to the students and are aimed at providing theoretical as well as practical training in their respective fields.

School offers undergraduate B.Sc. (Hons) Chemistry from 2013. This course emphasized hands on practice, innovative thought process and project-based learning.

Graduate Attributes

GA1: To demonstrate competence in discipline specific theoretical and practical Knowledge

GA2: To develop creativity and innovation

GA3: To enhance communication and interpersonal skills

GA4: To enable critical & logical thinking and investigative research attitude amongst students **GA5:** To develop ethical values, teamwork and lifelong learning approach

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO 1: To apply the basic principles of chemistry to the events occurring around us and also in the world.

PEO 2: To ignite the interest for research in students.

PEO 3: To employ logical reasoning, analytical, numerical ability and theoretical skills to model real-world problems and solve them.

PEO 4: To develop critical thinking, creative thinking, and self-confidence for eventual success in career.

PEO 5: To endow the students with creative and analytical skills; this will equip them to become entrepreneurs.

PEO 6: To acquire rewarding career/placement in educational institutions, engineering and industrial firms.

Programme Outcomes (POs)

PO1. Enhancement in Advanced Scientific knowledge about chemistry
PO2. Development of critical, logical and innovative thinking
PO3. Demonstrate interdisciplinary approach
PO4. Learning of fundamental concepts and instrumentation techniques
PO5. Orientation towards research and development
PO6. Acquiring capability to work independently as well as a member of the diverse team
PO7. Understanding of impact of chemicals on the environment
PO8. Fostering communication skills
PO9. Ethical awareness and digital literacy

PO10. Capability to deal with professional responsibilities

4. B. Sc. (Hons.) Chemistry

This course aims to impart basic and applied knowledge in various branches in Chemistry with a view to produce good academics, researchers and professionals in the field.

Eligibility Criteria: -The student should have passed the 10+2 examination conducted by theCentral Board of Secondary Education or equivalent examination from a recognized Board in Science stream with an aggregate of 50% or more.

Course Outline: -Inorganic chemistry / Organic chemistry / Physical chemistry / Analyticalmethods in chemical sciences / Environmental chemistry / Biochemistry / Green Chemistry.

Career Options: -Opportunities exist in chemical industry, pharmacy, education.

Programme Specific Outcome (PSOs)

PSO1. Systematic and coherent understanding of theoretical and practical concepts

PSO2. Appreciate the techniques for the qualitative and quantitative analysis.

PSO3. Learn problem solving approach.

PSO4. Apply principles of chemistry to address societal problems.

5. Programme Duration

The minimum period required for the B.Sc. Program and B.Sc. (Hons.) Programme offered by the University shall extend over a period of three Academic Years.

The maximum period for the completion of the B.Sc. Program and B.Sc. (Hons) Programme offered by the University shall be five years.

6. Class Timings

The classes will be held from Monday to Friday from 09:10 am to 04:10 pm.

7. Scheme of Studies and Syllabi

The syllabi of B.Sc. (H) Chemistry for all years offered by SBAS with scheme of studies are given in the following pages.

SEMESTE R	I	II	III	IV	V	VI	TOTA L
COURSES	9	9	11	11	9	9	56
CREDITS	26	27	29	27	24	30	163

B.Sc. (H) Chemistry Programme at a Glance

SCHEME OF STUDIES AS PER CHOICE-BASED CREDIT SYSTEM (CBCS) AND LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK (LOCF)

	SEMESTER I										
S.N 0.	COURSE CODE	COURSE TITLE	L	T	P	С	Total Hours				
1	BSCH106A	INORGANIC CHEMISTRY-I	3	1	0	4	4				
2	BSCH156A	INORGANIC CHEMISTRY-I PRACTICALS	0	0	4	2	4				
3	BSCH103A	ORGANIC CHEMISTRY-I	3	1	0	4	4				
4	BSCH153A	ORGANIC CHEMISTRY-I PRACTICALS	0	0	4	2	4				
5	UCES 125A	ENVIRONMENTAL STUDIES	3	0	0	3	3				
6	UCDM 301A	DISASTER MANAGEMENT	3			3	3				
7	BSCH132A	FERMENTATION SCIENCE AND TECHNOLOGY	2	0	0	2	2				
8	BSCH109A	HERBAL TECHNOLOGY	2	0	0	2	2				
9		GENERIC ELECTIVE-I/OPEN ELECTIVE-I	4	0	0	4	4				
	TOTAL					2 7	31				

		SEMESTER II	[
S.No	COURSE CODE	COURSE TITLE	L	Т	Р	С	Total Hours
1	BSCH102A	PHYSICAL CHEMISTRY-I	3	1	0	4	4
2	BSCH152A	PHYSICAL CHEMISTRY-I PRACTICALS	0	0	4	2	4
3	BSCH108A	ORGANIC CHEMISTRY-II	3	1	0	4	4
4	BSCH158A	ORGANIC CHEMISTRY-II PRACTICALS	0	0	4	2	4
5	UCCS 155A	COMMUNICATION SKILLS	4	0	0	4	4
6	ETCS104A	INTRODUCTION TO COMPUTERS AND PROGRAMMING IN PYTHON	3	1	0	4	4
7	ETCS150A	INTRODUCTION TO COMPUTERS AND PROGRAMMING IN PYTHON LAB	0	0	2	1	2
8	BSCH110A	INTELLECTUAL PROPERTY RIGHT (IPR) AND BUSINESS SKILLS FOR CHEMISTS	2	0	0	2	2
9		GENERIC ELECTIVE-I/OPEN ELECTIVE-II	4	0	0	4	4
	ı	TOTAL				27	32

	SEMESTER III											
S.No	COURSE CODE	COURSE TITLE	L	Т	Р	С	Total Hours					
1	BSCH201A	PHYSICAL CHEMISTRY-II	3	1	0	4	4					
2	BSCH251A	PHYSICAL CHEMISTRY-II PRACTICALS	0	0	4	2	4					
3	BSCH203A	ORGANIC CHEMISTRY-III	3	1	0	4	4					
4	BSCH253A	ORGANIC CHEMISTRY-III PRACTICALS	2	3								
5	BSCH205A	ANALYTICAL TECHNIQUES 3 1 0				4	4					
6	BSCH255A	ANALYTICAL TECHNIQUES OF CHEMISTRY PRACTICALS			2	3						
7		GENERIC ELECTIVE COURSE-III	3	1	0	4	4					
8		GENERIC ELECTIVE COURSE-III PRACTICALS	0	0	4	2	4					
9	ETCS109A	DATA ANALYSIS AND VISUALIZATION	2	0	0	2	2					
10	ETCS159A	DATA ANALYSIS AND VISUALIZATION LAB	0	0 0		1	2					
11		MOOC	0	0	0	2	0					
	1	TOTAL				29	34					

	SEMESTER IV										
S.No	COURSE CODE	COURSE TITLE	L	Т	Р	С	Total Hours				
1	BSCH202A	PHYSICAL CHEMISTRY-III	3	1	0	4	4				
2	BSCH252A	PHYSICAL CHEMISTRY-III PRACTICALS	0	0	4	2	4				
3	BSCH206A	INORGANIC CHEMISTRY-II	3	1	0	4	4				
4	BSCH254A	INORGANIC CHEMISTRY-II PRACTICALS	0	0	4	2	4				
5	BSCH208A	INTRODUCTION TO QUANTUM CHEMISTRY									
6	BSCH256A	INTRODUCTION TO QUANTUM CHEMISTRY PRACTICALS	CHEMISTRY 0 0 4 2		2	4					
7		GENERIC ELECTIVE COURSE-IV	3	1	0	4	4				
8		GENERIC ELECTIVE COURSE-IV PRACTICALS	0	0	4	2	4				
9	BSMA274A	INTRODUCTION TO LATEX	0	0	2	1	2				
10		VALUE ADDED COURSE	0	0	0	0	0				
11	BSCH210A	INTERNSHIP IN CHEMISTRY (25 Days)	0	0	0	2	0				
		TOTAL				27	34				

		SEMESTER V	7				
S.No	COURSE CODE	COURSE TITLE	L	Т	Р	С	Total Hours
1	BSCH301A	INORGANIC CHEMISTRY-III	3	1	0	4	4
2	BSCH351A	INORGANIC CHEMISTRY-III PRACTICALS	0	0	4	2	4
3	BSCH303A	MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY	3	1	0	4	4
4	BSCH353A	MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY PRACTICALS	0	0	4	2	4
5		DISCIPLINE ELECTIVE COURSE-I	3	1	0	4	4
6		DISCIPLINE ELECTIVE COURSE-I PRACTICALS	0	0	4	2	4
7		DISCIPLINE ELECTIVE COURSE-II	3	1	4	4	4
8		DISCIPLINE ELECTIVE COURSE-II PRACTICALS	0	0	4	2	4
9		VALUE ADDED COURSE	0	0	0	0	0
	L	TOTAL				24	32

	SEMESTER VI											
S.No	COURSE CODE	COURSE TITLE	L	Т	Р	С	Total Hours					
1	BSCH311A	BIOMOLECULES	4	0	0	4	4					
2	BSCH361A	BIOMOLECULES LAB	0	0	4	2	4					
3	BSCH302A	CHEMISTRY OF MATERIALS	3	1	0	4	4					
4	BSCH352A	CHEMISTRY OF MATERIALS PRACTICALS	0	0	4	2	4					
5		DISCIPLINE ELECTIVE COURSE-III	3	1	0	4	4					
6		DISCIPLINE ELECTIVE COURSE-III PRACTICALS	0	0	4	2	4					
7		DISCIPLINE ELECTIVE COURSE-IV	3	1	4	4	4					
8		DISCIPLINE ELECTIVE COURSE-IV PRACTICALS	0	0	4	2	4					
9	BSCH358A	RESEARCH PROJECT	0	0	2	6	2					
	ТО	TAL				30	34					

Electives (Choose any one from each)

		DISCIPLINE SPECIFIC ELECTIVE- I					
S.No.	COURSE CODE	COURSE TITLE	L	T	P		С
1.	BSCH305A	MEDICINAL CHEMISTRY	3	1	0		4
2.	BSCH355A	MEDICINAL CHEMISTRY PRACTICALS	0	0	4		2
3.	BSCH307A	HETREOCYCLIC CHEMISTRY	3	0		4	
4.	BSCH357A	HETREOCYCLIC CHEMISTRY PRACTICALS	0	0	4		2
		DISCIPLINE SPECIFIC ELECTIVE -II					
5.	BSCH309A	ADVANCE MATERIAL CHEMISTRY		3	1	0	4
6.	BSCH359A	ADVANCE MATERIAL CHEMISTRY PRACTICALS	()	0	4	2
7.	BSCH321A	ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY		1	0	4	
8.	BSCH371A	ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY PRACTICALS	()	0	4	2

		DISCIPLINE SPECIFIC ELECTIVE- III									
9.	BSCH304A	ENVIRONMENTAL CHEMISTRY	3	1	0	4					
10.	BSCH354A	ENVIRONMENTAL CHEMISTRY PRACTICALS	0	0	4	2					
11.	BSCH306A	ORGANIC SPECTROSCOPY	3	1	0	4					
12.	BSCH356A	ORGANIC SPECTROSCOPY PRACTICALS	0	0	4	2					
	DISCIPLINE SPECIFIC ELECTIVE- IV										
13.	BSCH308A	INTRODUCTION OF NANOCHEMISTRY AND APPLICATIONS	3	1	0	4					
14.	BSCH368A	INTRODUCTION OF NANOCHEMISTRY AND APPLICATIONS PRACTICALS	0	0	4	2					
15.	BSCH310A	GREEN PROCESSES OF CHEMISTRY	3	1	0	4					
16.	BSCH360A	GREEN PROCESSES OF CHEMISTRY PRACTICALS	0	0	4	2					
17.	BSCH332A	POLYMER CHEMISTRY	3	1	0	4					
18.	BSCH372A	POLYMER CHEMISTRY PRACTICALS	0	0	4	2					

Students can choose two noncreditvalue-added courses (3 hours per week), one in 4th semester and one in 5th semester during the entire duration of Programme from the pool of courses provided by the university.

Students can choose available MOOCs recommended by Dean Academics and approved by Vice Chancellor of K. R. Mangalam University, from the list of approved MOOCs by SWAYAM Board in each semester.

A student must do Internship of 25 days in 4th Semester; the university will provide NOC for the same.

Syllabi of Courses to B.Sc. (Hons.) Chemistry

Semester-I

BSCH106A	Inorganic Chemistry-I	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of atoms and bonding in molecules				
Co-requisites					

Course Objectives

- 1. To learn the students about theories of atomic structure and different principles
- 2. To learn the student's various properties of elements in periodic table

3. To study about the ionic and covalent bonding in compounds and general characteristics

4. To enable the students competently matters of metallic bonding and weak chemical forces.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental concepts related to atoms and their structure.

CO2. Understand the principles governing atomic structure.

CO3. Apply knowledge of bonding theories to predict molecular geometries and properties.

CO4. Analyze complex molecules and determine their bonding patterns.

CO5. Evaluate the relationship between atomic structure and chemical reactivity.

CO6. Create new models or theories to explain observed chemical phenomena.

Catalog Description

In this course students will learn about the structure of atom on the basis of different theories like Bohr's atomic theory, Planck's quantum theory, de – Broglie equation and Heisenberg's uncertainty principle. Students will learn about the orbital's in atom their size, shape, orientation and periodic properties. This course helps them to get idea about the VSEPR, VBT and MOT theories of chemical bonding and crystal structures. This will also provide information of metallic and Vander Waals bonds.

Course Content

UNIT I: Atomic Structure

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de' Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψI and $\psi 2$. Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves.

Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

UNIT II: Periodicity of Elements

15 Lectures

s, p, d, f block elements, the long form of periodic table. Detailed discussion of the following properties of the elements with reference to s and p-block.

(a) Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table.

(b) Atomic radii (Vander Waals)

(c) Ionic and crystal radii.

(d) Covalent radii (octahedral and tetrahedral)

(e) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy.

(f) Electron gain enthalpy, trends of electron gain enthalpy.

(g) Electronegativity, Pauling, Mullikan, Allred Rachow scales, electronegativity and bond order, partial charge, hybridization, group electronegativity. Sanderson electron density ratio.

UNIT III: Chemical Bonding

15 Lectures

Ionic bond: General characteristics, types of ions, size effects, radius ratio rule and its limitations. Packing of ions in crystals. Born-Landé equation with derivation, expression for lattice energy. Madelung constant, Born-Haber cycle and its application, Solvation energy.

(i) *Covalent bond:* Lewis's structure, Valence Shell Electron Pair Repulsion Theory (VSEPR), Shapes of simple molecules and ions containing lone-and bond-pairs of electrons multiple bonding, sigma and pi-bond approach, Valence Bond theory, (Heitler-London approach). Hybridization containing s, p and s, p, d atomic orbitals, shapes of hybrid orbitals, Bents rule, Resonance and resonance energy, Molecular orbital theory. Molecular orbital diagrams of simple homonuclear and hetero nuclear diatomic molecules, MO diagrams of simple triand tetra-atomic molecules, MO diagrams of simple triand tetra-atomic molecules., N₂,O₂,C₂,B₂,F₂,CO,NO,andtheirions;HCl,BeF₂,CO₂,HCHO,(ideaofs-pmixingandorbital interaction to be given). Covalent character in ionic compounds, polarizing power and polarizability. Fajanrules,polarization.Ioniccharacterincovalentcompounds:Bondmoment and dipole moment. Ionic character from dipole moment andelectronegativities.

UNIT IV: Metallic bonding and Weak chemical forces 15 Lectures

(ii) *Metallic Bond:* Qualitative idea of free electron model, Semiconductors, Insulators.

(iii) *Weak Chemical Forces:* Vander Waals, ion-dipole, dipole-dipole, induced dipole dipole- induced dipole interactions, Lenard-Jones 6-12 formula, hydrogen bond, effects of hydrogen bonding on melting and boiling points, solubility, dissolution.

Textbooks

1. Lee, J. D. Concise Inorganic Chemistry, Wiley, 5th Edn.

Reference Books/Materials

1. Douglas, B.E., McDaniel, D.H., Alexander J.J., Concepts & Models of Inorganic Chemistry, (Third Edition) John Wiley & Sons, 1999.

2. Atkins, P. W. and DePaula, J. Physical Chemistry, Tenth Edition, Oxford University Press, 2014.

3. Rodger, G. E. Inorganic and Solid State Chemistry, Cengage Learning, 2002.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
	ent				
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember fundamental concepts related to atoms and their structure.	PO1
CO2	Understand the principles governing atomic structure.	PO2
CO3	Apply knowledge of bonding theories to predict molecular geometries and properties.	PO1
CO4	Analyze complex molecules and determine their bonding patterns.	PO4
CO5	Evaluate the relationship between atomic structure and chemical reactivity.	PO3
CO6	Create new models or theories to explain observed chemical phenomena	PO4

Course Code BSCH	Course Title Inorgania	Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking PO2	Demonstr ate interdisci plinary approach PO3	Learning of fundame ntal concepts and instrume ntation technique s	Orienta tion towards researc h and develop ment PO5	Acquirin g capabilit y to work indepen dently as well as a member of the diverse team PO6	Understa nding of impact of chemical s on the environ ment PO7	Fostering communi cation skills PO8	Ethica l aware ness and digital literac y PO9	Capabilit y to deal with professio nal responsib ilities PO10	Systema tic and coherent understa nding of theoretic al and practical concepts PSO1	Apprec iate the techniq ues for the qualita tive and quantit ative analysi s	Lear n probl em solvi ng appro ach PSO 3	Apply princip les ofchem istry to address societa 1 proble ms
106A	Chemistr y-I		6		1	4			2			2	4	4	
1=weakly	y mapped	; = modera	tely mapp	ed; 3=stron	gly mapped										
						Program	nme and C	Course Ma	pping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO 2	PSO 3	PSC)4
CO1	3														
CO2				3											
CO3	3														
CO4				3											
CO5			2												
CO6				3											
			1	l=lightly ma	pped	2= mo	derately m	apped	3=stro	ongly ma	apped				

BSCH156A	Inorganic Chemistry-I Practicals	L	Т	Р	C
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	12 th level practices and experiments				
Co-requisites					

Course Objectives

- 1. To familiarize the students with solution preparations and calibration of apparatus.
- 2. To expertise the students in acid-base and redox titrations for quantitative analysis.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand principles and concepts underlying titration techniques.

CO2. Apply appropriate calculations to determine the concentration of an analyte in a sample.

CO3. Analyze experimental data and calculate the volume and concentration of reactants.

CO4. Evaluate the accuracy and precision of the obtained results.

CO5. Create Report for the experiment

Catalog Description

This course imparts the understanding of quantitative analysis by titration method to find out the concentrations of unknown salt or ions present in solution. This course helps them to get experience of preparing primary and secondary standard solutions with different normality and molarity. This course also introduces the calibration of apparatus and oxidation-reduction titrations..

Course Content

(A)	Titrimetric Analysis
(i)	Calibration and use of apparatus.
(ii)	Preparation of solutions of different Molarity/Normality oftitrants.
(iii)	Use of primary and secondary standardsolutions.
(B)	Acid-BaseTitrations
(i)	Estimation of carbonate and hydroxide present together in mixture.
(ii)	Estimation of carbonate and bicarbonate present together in amixture.
(iii)	Estimation of free alkali present in differentsoaps/detergents
(C)	Oxidation-ReductionTitrimetry
(i)	Estimation of Fe(II) and oxalic acid using standardized KMnO ₄ solution.
(ii)	Estimation of oxalic acid and sodium oxalate in a givenmixture

(ii) Estimation of oxalic acid and sodium oxalate in a givenmixture.

(iii) Estimation of Fe(II) with $K_2Cr_2O_7$ using internal (diphenylamine, anthranilic acid) and external indicator.

Textbooks

1. Mendham, J., A. I. Vogel's *Quantitative Chemical Analysis* Sixth Edition, Pearson,2009.

Reference Books/Materials

1. O. P. Pandey, D.N. Bajpai, S.Giri, Practical chemistry, S. Chand & Company Pvt. Ltd.

2. Svehala G. and Sivasankar I. B, Vogel's Qualitative Inorganic Analysis, Pearson, India, 2012.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct o Experiment	f Lab Record/Quizzes / Viva-Voce	Attendance	End Term PracticalExamin ation
Weightage (%)	20	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand principles and concepts underlying titration techniques.	PO1
CO2	Apply appropriate calculations to determine the concentration of an analyte in a sample.	PO1
CO3	Analyze experimental data and calculate the volume and concentration of reactants.	PO2
CO4	Evaluate the accuracy and precision of the obtained results.	PO2
CO5	Create Report for the experiment	

		Enhance	Develop	Demonstr	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ment in	ment of	ate	of	ion	g	nding of	communi	1	y to deal	tic and	iate the	probl	princip
		Advanc	critical,	interdisci	fundamen	towards	capabilit	impact	cation	aware	with	coherent	techniq	em	les
		ed	logical	plinary	tal	researc	y to	of	skills	ness	professio	understa	ues for	solvi	ofchem
		Scientifi	and	approach	concepts	h and	work	chemical		and	nal	nding of	the	ng	istry to
		c	innovati		and	develop	indepen	s on the		digital	responsib	theoretic	qualitat	appro	address
		knowled	ve		instrumen	ment	dently as	environ		literac	ilities	al and	ive and	ach	societa
		ge about	thinking		tation		well as a	ment		У		practical	quantit		1
		chemistr			technique		member					concepts	ative		proble
		У			S		of the						analysi		ms
							diverse						S		
							team								
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Inorga														
	nic												2		3
BSCH	Chemi	2	2	2		2						2			
156A	stry-I	3	3	2		3						3			
	Practic														
	als														
1=weakly	mapped	; 2= mode	rately map	oped; 3=stro	ngly mappe	ed									
			• •	•		Program	nme and (Course Ma	pping						
СО	PO1	PO2	2 PO 3	3 PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO 2	PSO 3	PS	04
										10					
CO1	3														
CO2	3											1			
CO3		3													
CO4		3													
	1	I		1=lightly m	apped	2 = mc	oderately n	napped	3=str	ongly m	apped	1	1		
-						2 110		rr-••	5 54						

BSCH103A	Organic Chemistry-I	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics introduction of organic chemistry				
Co-requisites					

Course Objectives

1. The course is infused with the recapitulation of fundamentals of organic chemistry and the introduction of a new concept of visualizing the organic molecules in a three-dimensional space.

2. To establish the applications of these concepts, the functional groups- alkanes, alkenes, alkynes and aromatic hydrocarbons are introduced.

3. The constitution of the course strongly aids in the paramount learning of the concepts and their applications.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand and explain the different nature and behavior of organic compounds based on fundamental concepts learnt.

CO2. Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.

CO3. Learn and identify many organic reaction mechanisms including Free Radical Substitution, Electrophilic Addition and Electrophilic Aromatic Substitution.

CO4. Understand the fundamental concepts of stereochemistry.

CO5. Analyze the basic difference between aliphatic and aromatic compounds.

CO6. Creation of logic behind organic chemistry.

Catalog Description

This course comprises of basics of organic chemistry, which involves concept of hybridization, various Electronic Displacements, reaction intermediates. Concept of stereochemistry is discussed. Aliphatic and aromatic hydrocarbons are also included, with preparation, physical properties and chemical properties.

Course Content

UNIT I

Basics of Organic Chemistry

Organic Compounds: Classification, and Nomenclature, Hybridization, Shapes of molecules, Influence of hybridization on bond properties. Electronic Displacements: Inductive, electromeric, resonance and mesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids and bases; their relative strength.

Homolytic and Heterolytic fission with suitableexamples. Curly arrow rules, formal charges; Electrophiles and Nucleophiles; Nucleophilcity andbasicity; Types, shape and relativestabilitiesofreactionintermediates(Carbocations,Carbanions, Free radicals and Carbenes).Organic reactions and their mechanism: Addition, Elimination and Substitution reactions.

UNIT II

Stereochemistry

Concepto asymmetry, Fischer Projection, Newmann and Saw horse projection formulae and their inter conversions; Geometricalisomerism: cis-transand,synantiisomerismE/ZnotationswithC.I.P rules. Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, meso structures, Racemic mixtures, Relative and absolute configuration: D/L and R/S designations.

UNIT III

Chemistry of Aliphatic Hydrocarbons

15 Lectures

15 Lectures

A. Carbon-Carbon sigmabonds

Chemistryofalkanes:Formationofalkanes,WurtzReaction,Wurtz-FittigReactions,Freeradical substitutions: Halogenation - relative reactivity and selectivity.

B. Carbon-Carbonpi-bonds

Formationofalkenesandalkynesbyeliminationreactions,MechanismofE1,E2,E1cbreactions.Say tzeff and Hofmann eliminations. Reactions of alkenes: Electrophilic additions their mechanisms (Markownikoff /Anti Markownikoff addition), mechanism of oxymercuration-demercuration, hydroboration- oxidation, ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1, 2- and 1, 4- addition reactions in conjugated dienes and Diels-Alderreaction;Allylicandbenzylicbrominationandmechanism,e.g.propene,1-butene,toluene, ethyl benzene. Reactions of alkynes: Acidity, Electrophilic and Nucleophilicadditions.

C. Cycloalkanes and ConformationalAnalysis

Cycloalkanes and stability, Baeyer strain theory, Conformation analysis, Energy diagrams of cyclohexane: Chair, Boat and Twist boat forms.

UNIT IV

Aromatic Hydrocarbons

Aromaticity: Huckel's rule, aromatic character of arenes, cyclic carbocations/carbanions and heterocycliccompoundswithsuitableexamples.Electrophilicaromaticsubstitution:halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of substituent groups.

Recommended Books/References:

1. Morrison, R. N. & Boyd, R. N. *Organic Chemistry*, 6th Edn., Dorling Kindersley (India) Pvt. Ltd. (PearsonEducation).

2. Pine S. H. Organic Chemistry, Fifth Edition, McGraw Hill,(2007)

3. F. A. Carey, Organic Chemistry, Seventh Edition, Tata McGraw Hill(2008).

4. J.Clayden,N.Greeves,S.Warren,OrganicChemistry,2ndEd.,(2012),OxfordUniversitiy Press.

5. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Part A: Structure and mechanism, Kluwer Academic Publisher,(2000).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm ent	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand and explain the different nature and behavior of organic compounds based on fundamental concepts learnt.	PO4
CO2	Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.	PO2
CO3	Learn and identify many organic reaction mechanisms including Free Radical Substitution, Electrophilic Addition and Electrophilic Aromatic Substitution.	PO2
CO4	Understand the fundamental concepts of stereochemistry.	PO1, PO4
CO5	Analyze the basic difference between aliphatic and aromatic compounds.	PO1
CO6	Creation of logic behind organic chemistry.	PO2

		Enhanc	Develo	Demonstr	Learning	g Orienta	Acquiri	Underst	a Fostering	Ethic	Capabilit	Systema	Appre	Learn	Apply
		ement	pment	ate	of	tion	ng	nding of			y to deal	tic and	ciate	proble	princip
		in	of	interdisci	fundame		-	•	cation	aware	with	coherent	the	m	les
		Advanc	critical,	plinary	ntal	researc	y to	of	skills	ness	professio	understa	techni	solvin	ofche
		ed	logical	approach	concepts		work	chemica		and	nal	nding of	ques	g	mistry
		Scientif	and	approach	and	develop		s on the	.1	digita	responsi	theoreti	for the	appro	to
		ic	innovati		instrume	-	dently	environ		1	bilities	cal and	qualita	ach	addres
		knowle	ve		ntation		as well	ment		literac	onnies	practical	tive	aen	s s
		dge	thinkin		techniqu		as a	ment		y		concept	and		societa
		about	g		es		member			3		s	quantit		1
		chemist	8		C B		of the					5	ative		proble
		ry					diverse						analysi		ms
		- 5					team						s		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH	ORGAN														
103A	IC													2	3
10011	CHEMI	3	3		3									_	C .
	STRY-I														
1-weekly)_ modera	tely mann	ed; 3=stron	aly mann	ad									
	gramme and			eu, 3–8001	igry mapp	cu									
CO	PO1	PO2	PO3	PO4	205 1	PO6 P	07 P	08 P	09 PO	10	PSO1	PSO 2	PSO 3	Р	SO4
CO1	101	3	1.00	10.						10	3	100 -	1000		
CO2		3									-				
CO3		-		3							3				
CO4				3											
CO5		3									2				
CO6		2													
1=lightly	mapped	2 = mode	erately mapp	bed	3=strongly 1	napped	I	I							
	11		- 11		0,	* *									

BSCH153A	Organic Chemistry-I Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of reaction mechanism				
Co-requisites					

Course Objectives

- 1. To enable the student for hands on learning by experiments.
- 2. To generate confidence among students to perform reactions or analysis.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the calibration of instruments.

CO2. Evaluate the boiling points and melting points correctly.

CO3. Understand the chromatographic techniques.

CO4. Analyze the separation of mixture.

CO5. Learn about purification of substances.

CO6. Learn about the environment safety at the time of performing experiment.

Catalog Description

This course provides information regarding Calibration of instruments, Purification of organic compounds and determination of boiling points, melting points of organic compounds. Chromatographic techniques (TLC) are the important part this course.

Course Content

30 lecture

1. Checking the calibration of thethermometer.

2. Purification of organic compounds by crystallization using the followingsolvents:

a.Water b. Alcohol c. Alcohol-Water

3. Determination of the melting points of given organic compounds and unknown organic compounds (using Kjeldahl method and electrically heated melting pointapparatus).

4. Effect of impurities on the melting point – mixed melting point of two unknown organic compounds.

5. Determination of boiling point of liquid compounds. (boiling point lower than and more than 100 °C by distillation and capillarymethod)

5. Chromatography

a. Separation of a mixture of two amino acids by ascending and horizontal paperchromatography

b. Separation of a mixture of two sugars by ascending paperchromatography

c. Separation of a mixture of *o*-and *p*-nitrophenol or o-and p-aminophenol by thin layer chromatography(TLC).

Recommended Books/Reference:

1.Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry*, Pearson Education (2009) 2.Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *Practical Organic Chemistry*, *5th Ed.*, Pearson (2012)

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of	Lab	Attendance	End Term
	Experiment	Record/Quizzes/ Viva-Voce		PracticalExamination
Weightage (%)	20	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs					
	Mapped Program Outcomes					
CO1	Understand the calibration of instruments.	PO4,				
CO2	CO2 Evaluate the boiling points and melting points correctly.					
CO3	Understand the chromatographic techniques.	PO1				
CO4	Analyze the separation of mixture.	PO1, PSO1				
CO5	Learn about purification of substances.	PO4, PSO4				
CO6	Learn about the environment safety at the time of performing experiment.	PO7, PSO4				

		Enhanc ement in Advanc ed Scientifi c knowle dge about	Develo pment of critical, logical and innovati ve thinking	Demonstr ate interdisci plinary approach	Learning of fundame ntal concepts and instrume ntation technique s	Orienta tion towards researc h and develop ment	Acquiri ng capabilit y to work indepen dently as well as a member	Understa nding of impact of chemical s on the environ ment	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsi bilities	Systema tic and coherent understa nding of theoretic al and practical concepts	Appre ciate the techni ques for the qualita tive and quantit	Learn proble m solvin g appro ach	Apply princip les ofche mistry to addres s societa 1
		chemist ry					of the diverse team						ative analysi s		proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 153A	ORGAN IC CHEMIS TRY-I PRACTI CALS	3			3			3				3	3	2	3

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PSO1	PSO 2	PSO 3	PSO4
CO1				3										
CO2				3										
CO3	3													
CO4	3													
CO5				3										
CO6							3							
	-			1=lightly	mapped	2=	= moderat	ely mappe	ed	3=strongly	y mapped	-		

UCES125A	Environmental Studies	L	Т	Р	С
Version 2.0		3	0	0	3
Total Contact Hours	45				
Pre-requisites/Exposure	Basics of Environment				
Co-requisites					

Course Objectives

1. To aware the students about the environment.

2. To learn the concepts and methods from ecological and physical sciences and their application in solving environmental issues.

3. To think across and beyond existing disciplinary boundaries, mindful of the diverse forms of knowledge and experience that arises from human interactions with the world around them.

4. To communicate clearly and competently matters of environmental concern before the audience after analyzing the data.

Course Outcomes

On completion of this course, the students will be able to

CO1. Comprehend and become responsive regarding environmental issues

CO2. Acquire the techniques to protect our mother earth, as without a clean, healthy, aesthetically beautiful, safe and secure environment no species can survive and sustain.

CO3. Enable the students to discuss their concern at national and international level with respect to formulate protection acts and sustainable developments policies.

CO4. Know that the rapid industrialization, crazy consumerism and over-exploitation of natural resources have resulted in degradation of earth at all levels and find solutions for the same. CO5. Become consciousness about healthy and safe environment.

Catalog Description

This course imparts the basic concepts of environment which enable them to solve basic problems related to their surroundings. This course helps them to get an idea adverse effect of industrialization, population and degradation of natural resources on the environment. The course introduces the concepts of renewable and non-renewable resources.

Course Content

UNIT I

15Lectures

Environment and Natural Resources:

Multidisciplinary nature of environmental sciences; Scope and importance; Need for public awareness. Land resources; land use change; Land degradation, soil erosion and desertification. Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal populations. Water: Use and over-exploitation of surface and ground water, floods, droughts, conflicts over water (international & inter-state). Energy resources: Renewable and non- renewable energy sources, use of alternate energy sources, growing energy needs, case studies.

UNIT II

Ecosystems and Biodiversity:

Ecosystem: Definition and Structure and function of ecosystem; Energy flow in an ecosystem: food chains, food webs and ecological succession.Case studies of the following ecosystems:

- a) Forest ecosystem
- b) Grassland ecosystem
- c) Desert ecosystem

d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biological diversity: genetic, species and ecosystem diversity; Biogeographic zones of India; Biodiversity patterns and global biodiversity hot spots ; India as a mega-biodiversity nation; Endangered and endemic species of India; Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts, biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity; Ecosystem and biodiversity services: Ecological, economic, social, ethical, aesthetic and Informational value.

UNIT III

Environmental Pollution and Environmental Policies:

Environmental pollution: types, causes, effects and controls; Air, water, soil and noise pollution Nuclear hazards and human health risks; Solid waste management: Control measures of urban and industrial waste; Pollution case studies.

Sustainability and sustainable development; Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture; Environment Laws: Environment Protection Act; Air (Prevention & Control of Pollution) Act; Water (Prevention and control of Pollution) Act; wildlife Protection Act; Forest Conservation Act; Nature reserves, tribal populations and rights, and human wildlife conflicts in Indian context. Fundamentals and Application of ESG (Environment Social Governance).

UNIT IV

Human Communities and the Environment and Field work:

Human population growth: Impacts on environment, human health and welfare; Resettlement and rehabilitation of project affected persons; case studies; Disaster management: floods, earthquake, cyclones and landslides; Environmental movements: Chipko, Silent valley, Bishnoi's of Rajasthan; Environmental ethics: Role of Indian and other religions and cultures in environmental conservation; Environmental communication and public awareness, Recent Case studies related to earthquakes, Foods, Famine, Water Crisis/Scarcity, Smog, Water contamination at National and International Level.

Visit to an area to document environmental assets: river/ forest/ flora/fauna, etc.

Visit to a local polluted site-Urban/Rural/Industrial/Agricultural.

Study of common plants, insects, birds and basic principles of identification. Study of simple ecosystems-pond, river, Delhi Ridge, etc.

Textbooks

1. Kaushik and Kaushik, Environmental Studies, New Age International Publishers (P) Ltd. New Delhi.

15 Lectures

15 Lectures

Reference Books/Materials

1. A.K. De, Environmental Chemistry, New Age International Publishers (P) Ltd. New Delhi.

2. S.E. Manahan, Environmental Chemistry, CRC Press.

3. S.S Dara and D.D. Mishra, Environmental Chemistry and Pollution Control, S.Chand & Company Ltd, New Delhi.

4. R. Gadi, S. Rattan, S. Mohapatra, Environmental Studies Kataria Publishers, New Delhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A Attenda		Mid Term	Presentation/	End Term
	ent	nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	The learners will be able to comprehend and become responsive regarding environmental issues.	PO6
CO2	Students will acquire the techniques to protect our mother earth, as without a clean, healthy, aesthetically beautiful, safe and secure environment no specie can survive and sustain.	PO10
CO3	It enables the students to discuss their concern at national and international level with respect to formulate protection acts and sustainable developments policies.	PO8
CO4	Students come to know that the rapid industrialization, crazy consumerism and over-exploitation of natural resources have resulted in degradation of earth at all levels.	PO9
CO5	Students become consciousness about healthy and safe environment.	PO2

		Enhanc	Develo	Demonst	Learnin	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	g of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princip
		in	of	interdisc	fundame	toward	capabili	of	commun	awar	deal	coheren	the	em	les
		Advan	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	solvi	of che
		ced	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scienti	and		and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		fic	innovat		instrume	develo	dently	ls on		1	responsi	of	qualit	ach	addres
		knowle	ive		ntation	pment	as well	the		litera	bilities	theoreti	ative		S
		dge	thinkin		techniqu		as a	environ		cy		cal and	and		societa
		about	g		es		membe	ment				practica	quanti		1
		chemis					r of the					1	tative		proble
		try					diverse					concept	analys		ms
G							team					S	is		
Cours e	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code	Title	101	102	105	104	105	100	107	100	10)	1010	1501	1502	1505	1504
BSCH	Environ													2	
125A	mental		2				3		3	3	2			3	
12571	Studies														
1=weakly	mapped;	2= modera	ately map	ped; 3=stro	ongly mapp	ed							1		
Pr	ogramme	and Cou	rse Mapp	ing											
СО	PO1	PO2	PO3	PO4 I	PO5 PC	6 PO	7 PO8	PO9	PO 10	PSC	D1 PS	02 F	PSO 3	PSO4	
CO1						3									
CO2						3			3						
CO3							3							3	
CO4						3		3						3	
CO5									3					1	
1=lightl	y mapped	2	= moderat	ely mappe	d	3=strongl	y mapped			•	•			-	

UCDM301A	Disaster Management	L	Т	Р	С
Version 1.0		3	0	0	3
Total Contact Hours	45				
Pre-requisites/Exposure	Basics of Disasters and control techniques				
Co-requisites					

Course Objectives

1. To create awareness about various types of disasters.

2. To educate the students about basic disaster management strategies and problem solving.

3. To examine disaster profile of our country and illustrates the role of governmental and non-governmental organizations in its effective management.

4. To acquaints students with the existing legal frame work for disaster management and understanding the appropriate rules and regulations.

Course Outcomes

On completion of this course, the students will be able to

CO1. To enable the students to know the difference between natural and man- made disaster

CO2. To acquire the knowledge related to disaster preparedness

CO3. To aware the student about recovery after disaster

CO4. To know the structure and functioning of disaster management framework of our country CO5. To provide the knowledge about disaster management act

Catalog Description

This course imparts the basic concepts of environment which enable them to solve basic problems related to their surroundings. This course helps them to get an idea adverse effect of industrialization, population and degradation of natural resources on the environment. The course introduces the concepts of renewable and non-renewable resources.

Course Content

UNIT I

Introduction to Disasters:

Concept and definitions- Disaster, Hazard, vulnerability, resilience, risks.Different Types of Disaster: Causes, effects and practical examples for all disasters. Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides etc. Man-made Disaster: such as Fire, Industrial Pollution, Nuclear Disaster, Biological Disasters, Accidents (Air, Sea, Rail & Road), Structural failures (Building and Bridge), War & Terrorism etc.

UNIT- II

Disaster Preparedness

Concept and Nature, Disaster Preparedness Plan, Prediction, Early Warnings and Safety Measures of Disaster, Role of Information, Education, Communication, and Training, Role of Government, International and NGO Bodies, Role of IT in Disaster Preparedness, Role of Engineers on Disaster Management, Relief and Recovery, Medical Health Response to Different Disasters

UNIT III

Rehabilitation, Reconstruction and Recovery

Reconstruction and Rehabilitation as a Means of Development, Damage Assessment, Post Disaster effects and Remedial Measures, Creation of Long-term Job Opportunities and Livelihood Options, Disaster Resistant House Construction, Sanitation and Hygiene, Education and Awareness, Dealing with Victims' Psychology, Long-term Counter Disaster Planning, Role of Educational Institute.

UNIT IV

Disaster Management in India

Disaster Management Act, 2005: Disaster management framework in India before and after Disaster Management Act, 2005, National Level Nodal Agencies, National Disaster Management AuthorityLiabilityforMassDisaster: Statutoryliability, Contractualliability, Tortiousliability, Criminalliability,MeasureofdamagesEpidemics Diseases Act, 1897: Main provisions, loopholes.Applications of AI and ML in Disaster Management and risk predictions.

Textbooks

1. Content building programme (CBP) book on Disaster Management, Forum AS.

Reference Books/Materials

1. Government of India, Department of Environment, Management of Hazardous Substances Control

2. Act and Structure and Functions of Authority Created Thereunder.

3. Indian Chemical Manufacturers' Association & Loss Prevention Society of India, Proceedings of the National Seminar on Safety in Road Transportation of Hazardous Materials: (1986).

4. Author Title Publication Dr. Mrinalini Pandey Disaster Management Wiley India Pvt. Ltd.

5. Tushar Bhattacharya Disaster Science and Management McGraw Hill Education (India) Pvt. Ltd.

6. Jagbir Singh Disaster Management: Future Challenges and Opportunities K W Publishers Pvt. Ltd.

7. J. P. Singhal Disaster Management Laxmi Publications.

8. Shailesh Shukla, Shamna Hussain Biodiversity, Environment and Disaster Management Unique Publications

7 Lectures

8 Lectures

9. C. K. Rajan, Navale Pandharinath Earth and Atmospheric Disaster Management: Nature and Manmade B S Publication

10. Indian law Institute (Upendra Baxi and Thomas Paul (ed.), Mass Disasters and Multinational Liability: The Bhopal Case (1986)

11. Indian Law Institute, Upendra Baxi (ed.), Environment Protection Act: An Agenda for Implementation (1987)

12. Asian Regional Exchange for Prof. Baxi., Nothing to Lose But our Lives: Empowerment to Oppose

13. Industrial Hazards in a Transnational world (1989)

14. Gurudip Singh, Environmental Law: International and National Perspectives (1995), Lawman (India) Pvt. Ltd.

15. Leela Krishnan, P, The Environmental Law in India, Chapters VIII, IX and X (1999), Butterworths, New Delhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz I	Quiz II	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	To enable the students to know the difference between natural and man- made disaster	PO6
CO2	Acquire the knowledge related to disaster preparedness	PO10
CO3	To aware the student about recovery after disaster	PO8
CO4	To know the structure and functioning of disaster management framework of our country	PO9
CO5	To provide the knowledge about disaster management act	PO2

		Enhanc	Develo	Demonst	Learning	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Annro	Loor	Apply
					U						_		Appre	Lear	Apply
		ement	pment	rate	of	ation	ng	anding	g	al	ty to	atic and	ciate	n	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	probl	ples
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	em	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	solvi	mistry
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	ng	to
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualita	appr	addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	tive	oach	S
		dge	thinkin		techniqu		as a	ment		cy		cal and	and		societ
		about	g		es		member					practica	quanti		al
		chemist					of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					s	is		
Course	Course														
Code	Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO	PSO4
Coue	THE													3	
	Disaste														
BSDM	r		2				2		2	2	2			3	
301A	Manag		2				3		3	3	2				
	ement														

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

]	Progra	mme a	nd Co	urse M	apping				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PSO1	PSO 2	PSO 3	PSO4
CO1				3		2								
CO2	3									3				
CO3								2						3
CO4									3					3
CO5	3													
	-	1=li	ghtly n	napped	oped	3=	=strongl	y mapped	l					

BSCH132A	Fermentation Science and Technology	L	Т	Р	С
Version 1.0		2	0	0	2
Total Contact Hours	30				
Pre-requisites/Exposure	12 th Standard Chemistry				
Co-requisites					

- 1. To acquaint students with microbial culture and its preparation.
- 2. To learn methods of preservation of microbial culture.
- 3. To understand principles of fermentation technology.
- 4. To understand microbial production of some common products.

Course Outcomes

On completion of this course the students will be able to;

CO1:Learn the process for maintenance and preservation ofmicroorganisms

CO2:Analyze the various aspects of the fermentation technology and apply it for fermentative production

CO3: Demonstrate proficiency in the experimental techniques for microbial production of enzymes: amylase and protease, bio productrecovery etc.

CO4: Understand about preparation and sterilization of microbial culture

Catalog Description

Fermentation is process which is very widely used in food industry, pharmaceutical and many other industries for production of several products such as cheese, penicillin, streptomycin etc. The course provides the basic understanding about the structure of microbes such bacteria, fungus etc. How growth of these microbes occur in the fermentation media, nutrients required for their growth, and their preservation techniques etc. The knowledge about fermenters is also given.

The course gives an overview of microbes and microbial reactions which take place during fermentation of common products such as vinegar, alcohol, enzymes etc.

Course Content

UnitI 15 lecture

Preparationofmicrobialculture, preparationandsterilizationoffermentationmedia, Isolationand improvement of industrially importantmicroorganisms. Maintenance and preservation of microorganisms, metabolic regulations and overproduction of metabolites. Kinetics of microbial growth and product formation.

UnitII 15 lecture

Scopeandopportunities offermentation technology. Principles offermentation: Submerged, solid state, batch, fed-batch and continuous culture. Fermentative production of vinegar, alcohol (ethanol, wine, beer), acids (citric acid and gluconic acid), amino acids (lysine and glutamic acid) and antibiotics (penicillin and streptomycin). Microbial production of enzymes: Amylase and Protease. Bioproduct recovery.

Suggested readings

1. Waites M.J. (2008). Industrial Microbiology: An Introduction, 7th Edition, Blackwell Science, London,UK.

2. PrescottS.C.,DunnC.G.,ReedG.(1982).Prescott&Dunn'sIndustrialMicrobiology,4th Edition, AVI Pub. Co.,USA.

3. Reed G. (2004). Prescott & Dunn's industrial microbiology, 4th Edition, AVI Pub. Co., USA.

4. JR Casida L.E. (2015). Industrial Microbiology, 3rd Edition, New Age International (P) Limited Publishers, New Delhi,India.

5. WaitesM.J.,MorganN.L.,RockeyJ.S.andHigtonG.(2001)IndustrialMicrobiology:An Introduction. 1st Edition, Blackwell Science, London,UK.

6. Pelczar M.J., Chan E.C.S. and Krieg N.R. (2003) Microbiology. 5th Edition, Tata McGraw-Hill Publishing Company Limited, NewDelhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm ent	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Employ the process for maintenance and preservation of microorganisms	PO3
CO2	Analyze the various aspects of the fermentation technology and apply for Fermentative production	PO3
CO3	Demonstrate proficiency in the experimental techniques for microbial production of enzymes: amylase and protease, bio productrecover	PO4
CO4	Understanding about preparation and sterilization of microbial culture	PO3

				~							~		L .	-	
		Enhanc	Develo	Demonst	Learnin	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Lear	Apply
		ement	pment	rate	g of	ation	ng	anding	g	al	ty to	atic and	ciate	n	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	prob	ples
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	lem	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	solvi	mistry
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	ng	to
		ic	innovat		instrume	develo	dently	ls on		1	responsi	of	qualit	appr	addres
		knowle	ive		ntation	pment	as well	the		litera	bilities	theoreti	ative	oach	S
		dge	thinkin		techniqu		as a	environ		cy		cal and	and		societ
		about	g		es		membe	ment				practica	quanti		al
		chemist					r of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					s	is		
Course	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	DO10	PSO1	PSO2	PSO	PSO4
Code	Title	POI	PO2	P03	PO4	P05	PO6	PO7	P08	P09	PO10	P501	PS02	3	PS04
	Fermen														
	tation														
BSCH	Science			2	2							2			1
111A	and			-	_							_			-
	Techno														
	logy														
1=weakly	mapped;	2= modera	tely mapp	ed; 3=stron					•						
<u> </u>	DOA	DOC	DOC	- DO (8		ourse Map			DCOA		DCO 2	DCC	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSC)4
CO1			3												
CO2			3												
CO3				3											
CO4			3												
			1:	=lightly maj	pped	2 = moo	derately ma	apped	3=stro	ongly ma	apped				

BSCH109A	Herbal Technology	L	Т	Р	С
Version 1.0		2	0	0	2
Total Contact Hours	30				
Pre-requisites/Exposure	12 th Standard Chemistry				
Co-requisites					

1. To acquaint students with different traditional systems of medicines.

2. To enable them to show methods of extraction of phytochemicals, their separation and identification of phytoconstituents

- 3. To learn techniques to grow them profitably and their storage and processing.
- 4. To learn the usage of these plant materials as cosmetic, nutraceuticals or fungicides etc.

Course Outcomes

On completion of this course the students will be able to;

CO1: Develop understanding about HerbalTechnology and principles of cultivation of herbalproducts

CO2: List the major herbs, their botanical name and chemical constituents and evaluate the drug adulteration through the biological testing

CO3: Develop the skills for cultivation of plants and their processing / storage / qualitycontrol etc.

CO4: Gain knowledge about tissue culture and micro propagation

Catalog Description

It has been observed that synthetic medicines prepared in the laboratory are administered to patients to cure diseases cause several side effects. It is thus very important to explore our age old traditional medicinal plants or bhasms etc.so that they can be studied in a systematic way to find out their benefits. Several medicinal herbs and plants contain large number of phytoconstituents which can be used as nutraceuticals, herbal medicines, pesticides etc.

The course gives an overview of traditional systems of medicines, important herbal medicinal plants, their cultivation methods and usage.

Course Content

Unit I

Herbal Technology: Definition and scope; Herbal medicines: history and scope; Traditional systems of medicine, and overview of AYUSH (Traditional Indian Systems of Medicine); Cultivation - harvesting - processing - storage of herbs and herbal products.

Unit II

Value added plant products: Herbs and herbal products recognized in India; Major herbs used as herbal medicines, nutraceuticals, cosmeceuticals and biopesticides, their Botanical names, plant parts used, major chemical constituents.

8 lecture

8 lecture

Unit III

Pharmacognosy - Systematic position, botany of the plant part used and active principles of the following herbs: Tulsi, Ginger, Curcuma, Fenugreek, Indian Gooseberry, *Catharanthus roseus*, *Withaniasomnifera*, *Centellaasiatica*, *Achyranthesaspera*, Kalmegh, Giloe(Tinospora), Saravar. Herbal foods, future of pharmacognosy.

Unit IV

7 lecture

7 lecture

Analytical Pharmacognosy: Morphological and microscopic examination of herbs, Evaluation of drug adulteration - types, methods of drug evaluation - Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds).Plantgenebanks,CultivationofPlantsand theirvalueadded processing / storage / quality control for use in herbal formulations, Introductory knowledge of Tissue culture and Micro propagation of some medicinal plants (*Withania somnifera*, neem and tulsi),

Suggested Readings

1. Agarwal, P., Shashi, Alok., Fatima, A. and Verma, A. (2013). Current scenario ofHerbal Technology worldwide: An overview. *Int J Pharm Sci Res*; 4(11):4105-17.

2. Arber, Agnes. (1999). Herbal Plants and Drugs. Mangal Deep Publications, Jaipur.

3. Varzakas, T., Zakynthinos, G, and Francis Verpoort, F. (2016). Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 5 : 88.

4. Aburjai, T. and Natsheh, F.M. (2003). Plants Used in Cosmetics. Phytotherapy Research 17 :987-1000.

5. Patri, F. and Silano, V. (2002). Plants in cosmetics: Plants and plant preparations used as ingredients for cosmetic products - Volume 1. ISBN 978-92-871-8474-0, pp218.

6. AYUSH (www.indianmedicine.nic.in). *About the systems—An overview of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homeopathy.* New Delhi: Department of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homoeopathy (AYUSH), Ministry and Family Welfare, Government ofIndia.

7. Evans, W.C. (2009): Trease and Evans PHARMACOGNOSY. 16th Edition, SAUNDERS/ Elsevier.

8. Sivarajan, V.V. and India, B. (1994). Ayurvedic Drugs and Their Plant Sources. *Oxford* & *IBH Publishing Company*, 1994 - Herbs - 570 pages.

9. Miller, L. and Miller, B. (2017). Ayurveda & Aromatherapy: The Earth Essential Guideto Ancient Wisdom and Modern Healing. *Motilal Banarsidass*,; *Fourth edition*.

10. Kokate, C.K. (2003). Practical Pharmacognosy. Vallabh Prakashan, Pune.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Develop their understanding on HerbalTechnology and principle of cultivation of herbalproducts.	PO1
CO2	List the major herbs, their botanical name and chemicalconstituents and evaluate the drug adulteration through the biologicaltesting	PO4
CO3	Develop the skills for cultivation of plants and their value added processing / storage / qualitycontrol	PO5
CO4	Knowledge about tissue culture and micropropagation	PO4

		Enhanc	Develo	Demonst	Learning	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	em	ples
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	solvi	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualita	ach	addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	tive		S
		dge	thinkin		techniqu		as a	ment		cy		cal and	and		societ
		about	g		es		membe					practica	quanti		al
		chemist					r of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					S	is		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Herba														2
BSCH	1	2			1	1									
109A	Techn	3			1	1									
	ology														
1=weakly	mapped	2= moder	ately map	ped 3=stron	gly mapped	l									
						Progra	mme and	Course M	apping						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO 2	PSO 3	3 P	SO4
										10					
CO1	3														
CO2				3											
CO3					3										

CO4

SEMESTER II

BSCH102A	Physical Chemistry-I	L	Т	Р	C
Version 3.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

Course Objectives

1. To be able to differentiate between the three states of matter on the basis of their properties.

- 2. To learn about various gas laws and equations (ideal and Van Der Waals)
- 3. To understand various aspects related to ionic equilibrium.
- 4. To develop an understanding of arrangement of atoms/ions in crystalline solids.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand Fundamental Concepts of gaseous law, equilibrium and its application to various systems.

CO2. Analyze the behavior of real gases using the Van der Waals equation.

CO3. Apply the gas laws (e.g., Boyle's law, Charles's law, Avogadro's law) to solve problems related to gas properties and behavior.

CO4. Apply mathematical and conceptual problem-solving skills to solve complex physical chemistry problems.

CO5. Develop critical thinking skills to analyze and evaluate experimental results and propose solutions

Catalogue Description

This course imparts the basic concepts of states of matter and ionic equilibrium. It enables the students to learn about the various properties which are unique to solids, liquids and gases. The course will help to explain several gas laws, and equation with the help of kinetic theory of gases. The course introduces the basic concepts about ionic equilibrium, namely, ionisation, hydrolysis, titrations buffer solutions, acid-base titrations, etc. stacks, queues, lists, trees and graphs. It also discusses about the structure and arrangement at the atomic level in the liquid state and the solid state.

Course Content

Unit I:

Gaseous state

Behavior of real gases: Deviations from ideal gas behavior, compressibility factor, and its variation with pressure for different gases. Causes of deviation from ideal behavior.van der Waals equation of state, its derivation and application in explaining real gas behaviour; van der Waals equation expressed in virial form, Boyle temperature. Isotherms of real gases and their comparison with van der Waals isotherms, continuity of states, critical state, critical and van der Waals constants, law of corresponding states.

Unit II:

Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure. Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities.

Liquid state

Structure and physical properties of liquids; vapour pressure, surface tension, viscosity, and their dependence on temperature, Effect of addition of various solutes on surface tension, cleansing action of detergents. Structure of water.

Unit III:

Ionic equilibria

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di- and tri-protic acids.Salt hydrolysis, hydrolysis constants, degree of hydrolysis and pH for different salts.Buffer solutions; Henderson equation, buffer capacity, buffer range, buffer action, applications of buffers in analytical chemistry, Solubility and solubility product. Brönsted-Lowry concept of acid-base reactions, solvated proton, relative strength of acids, types of acid-base reactions, levelling solvents, Lewis acid-base concept, Classification of Lewis acids, Hard and Soft Acids and Bases (HSAB) Application of HSAB principle. Qualitative treatment of acid – base titration curves (calculation of pH at various stages). Theory of indicators; selection of indicators and their limitations.Multistage equilibria in polyelectrolytes.

15 Lectures

15 Lectures

15 Lectures

15 Lectures

Unit IV:

Solid State

Nature of the solid state, law of constancy of interfacial angles, law of rational indices, Millerindices, elementary ideas of symmetry, symmetry elements and symmetry operations, qualitativeidea of point and space groups, seven crystal systems and fourteen Bravais lattices; X-raydiffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method.Analysis of powder diffraction patterns of NaCl, CsCl and KCl. Various types of defects in crystals,Glasses and liquid crystals.

Text Books

1. Atkins, P. W. & amp; Paula, J. de Atkin's Physical Chemistry 8th Ed., Oxford University Press (2006).

- 2. Ball, D. W. Physical Chemistry Thomson Press, India (2007).
- 3. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).

Reference Books/Materials

- 1. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 2. G. M. Barrow, Tata McGraw Hill (Fifth Edition) (2007)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Component	Quiz/Ass	Attendance	Mid Term	Presentation/	End Term
s	ignment		Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program
CO1	Understand Fundamental Concepts of gaseous law,	PO1
CO2	Analyze the behavior of real gases using the Van der Waals	PSO3
CO3	Apply the gas laws (e.g., Boyle's law, Charles's law,	PO1
CO4	Apply mathematical and conceptual problem-solving skills to	PSO3
CO5	Develop critical thinking skills to analyze and evaluate	PO2

		Enhanc ement in Advanc ed Scientifi c knowle dge about chemist ry	Develo pment of critical, logical and innovati ve thinking	Demonstr ate interdisci plinary approach	Learning of fundame ntal concepts and instrume ntation technique s	Orienta tion towards researc h and develop ment	Acquiri ng capabilit y to work indepen dently as well as a member of the diverse team	Understa nding of impact of chemical s on the environ ment	Fostering communi cation skills	Ethica l aware ness and digital literac y	y to deal with professio nal responsi	Systema tic and coherent understa nding of theoretic al and practical concepts	iate the techniq ues for the qualita tive and	probl	princip les
Course Code	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 102A	Physic al Chemi stry-I	3	5		1	2								4	

1=weakly mapped 2= moderately mapped 3=strongly mapped

						Program	me and C	ourse Map	oping					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PSO1	PSO 2	PSO 3	PSO4
CO1	3													
CO2													3	
CO3	3													
CO4		3												
CO5				3										
CO6												3		
1=lightly mapped2= moderately mapped3=strongly mapped														

SCH152A	Physical Chemistry-I Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

1. To be able to use simple glass instruments like viscometer and stalagmometer.

2. To calculate the values of surface tension and viscosity from the relevant experimental readings.

3. To use a pH-meter and measure the pH value of any given solution.

4. To understand the theory of pH-metric titrations.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the working principles of instruments used in surface tension, viscosity, and pHmetry experiments.

CO2. Apply appropriate calculations and statistical analysis to quantify and report uncertainties in the measurements.

CO3.Analyze experimental data and interpret results based on theoretical concepts.

CO4. Evaluate and quantify uncertainties associated with measurements and calculations.

CO5.Create well-structured laboratory reports that include experimental procedures, observations, and results for surface tension, viscosity, and pHmetry experiments.

Catalog Description

15 lecture

This course imparts the basic concepts of physical chemistry experiments. It enables the students to learn the usage of simple instruments like viscometer and stalagmometer. The course will explain the working theory behind a pH-meter, and how to carry out measurements and pH-metric titrations. The course introduces the basic concepts about buffer solutions and the students will observe the resistance in pH change of buffer solutions.

Course Content

1. Surface tensionmeasurements.

- a. Determine the surface tension by (i) drop number (ii) drop weightmethod.
- b. Study the variation of surface tension of detergent solutions with concentration.
- 2. Viscosity measurements using Ostwald'sviscometer.
- a. Determinationofviscosityofaqueoussolutionsof(i)polymer(ii)ethanoland(iii)sugaratroom temperature.
- b. Viscosity of sucrose solution with the concentration of solute.

3. pHmetry

a. Effect on pH of addition of HCl/NaOH to solutions of acetic acid, sodium acetate and their mixtures.

b. Preparation of buffer solutions of differentpH

i.Sodium acetate-acetic acid

- ii. Ammonium chloride-ammonium hydroxide
- c. pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strongbase.
- d. Determination of dissociation constant of a weakacid.

Recommended text books/references:

1. Khosla, B. D.; Garg, V. C. & Gulati, A. *Senior Practical Physical Chemistry*, R. Chand & Co.: New Delhi(2011).

2. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. *Experiments in Physical Chemistry* 8th Ed.; McGraw-Hill: New York (2003).

3.Halpern, A. M. & McBane, G. C. *Experimental Physical Chemistry 3rd Ed.*; W.H. Freeman & Co.: New York(2003).

4. Athawale V. D. and Mathur P. Experimental Physical Chemistry,, New Age Intenational (2001)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct o Experiment	f Lab Record/Quizzes / Viva-Voce	Attendance	End Term PracticalExamin ation
Weightage (%)	20	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand working principles of instruments used in surface tension, viscosity, and pHmetry experiments.	PO4
CO2	Apply appropriate calculations and statistical analysis to quantify and report uncertainties in the measurements.	PO5
CO3	Analyze experimental data and interpret results based on theoretical concepts.	PSO1
CO4	Evaluate and quantify uncertainties associated with measurements and calculations.	PO2
CO5	Create well-structured laboratory reports that include experimental procedures, observations, and results for surface tension, viscosity, and pHmetry experiments.	PO1

		Enhanc	Develo	Demonstr	Learning	Orienta	Acquiri	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ement in	pment	ate	of	tion	ng	nding of	communi		y to deal		iate the		princip
		Advanc	of	interdisci	fundame	towards	capabilit	impact	cation	aware	with	coherent	techniq	-	les
		ed	critical,	plinary	ntal	researc	y to	of	skills	ness	professio	understa	ues for		
		eu Scientifi	logical	approach	concepts	h and	-	chemical	581115	and	nal	nding of			istry to
		c	and	approach	and	develop		s on the			responsi	theoretic		g	address
		c knowle	innovati		instrume	ment	dently as			-	bilities		tive	appro ach	societa
		dge	ve		ntation	ment	well as a				Unities	practical	and	acii	1
		about	thinking		technique		member	ment		У		1	quantit		proble
		chemist	unnking				of the					concepts	ative		ms
					S		diverse						analysi		1115
		ry					team						•		
							teann						S		
	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Physic al Chemi	3	2		1	2						3			
	stry-II														
1=weakly	v mapped	l 2= mode	rately map	ped 3=stron	gly mapped	1									
			, -r	L	C, Tro		nme and C	Course Ma	pping						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10	PSO1	PSO 2	PSO 3	PSC)4
CO1				3											
CO2					3										
CO3											3				
CO4		3													
CO5	3														
	1=lightly mapped 2= moderately mapped 3=strongly mapped														

BSCH108A	Organic Chemistry-II	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of reaction mechanism				
Co-requisites					

1. Understanding of the organic functional groups, which include halogenated hydrocarbons and oxygen containing functional groups and their reactivity patterns.

2. The detailed reactions mechanistic pathways for each functional group will be discussed to unravel the spectrum of organic chemistry and the extent of organic transformations.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand preparation, properties and reactions of haloalkanes and haloarenes

CO2. Understand preparation, properties and reactions of alcohols and phenols

CO3. Learn the chemistry of named reactions related to carbonyl compounds.

CO4. Understand preparation, properties and reactions of Carboxylic acids.

CO5. Apply the knowledge of synthetic chemistry learnt in this course to do functional group transformations.

CO6. Propose possible mechanisms for any relevant reaction.

Catalog Description

This course contains chemistry of halogenated compounds, alcohols and phenols. Course also contributes various name reactions of carbonyl compounds including details of carboxylic acids.

Course Content

UNIT I

Chemistry of Halogenated Hydrocarbons

15 Lectures

Alkyl halides: Methods of preparation, nucleophilic substitution reactions – SN1, SN2 and S^{I} mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination.

Aryl halides: Preparation, including preparation from diazonium salts. nucleophilic aromatic substitution; SNAr, Benzyne mechanism.

Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.

Organometallic compounds of Mg and Li and their use in synthesis.

UNIT II

Alcohols, Phenols, Ethers and Epoxides

Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvaelt-Blanc Reduction;Preparationandpropertiesofglycols:Oxidationbyperiodicacidandleadtetraacetate, Pinacol-Pinacolonerearrangement.

Phenols: Preparation and properties; Acidity and factors effecting it, Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism.

Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH4

UNIT III

Carbonyl Compounds

Structure, reactivity and preparation; Nucleophilic additions, Nucleophilic additionelimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisen-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α -substitution reactions, oxidations and reductions (Clemmensen, Wolff- Kishner, LiAlH4, NaBH4, MPV, PDC and PGC);

Addition reactions of unsaturated carbonyl compounds: Michael addition.

Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.

UNIT IV

Carboxylic Acids and their Derivatives

Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids: succinic/phthalic, lactic, malic, tartaric,

citric,maleicandfumaricacids;Preparationandreactionsofacidchlorides,anhydrides,estersand amides; Comparative study of nucleophilic substitution at acyl group -Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmannbromamide degradation and Curtiusrearrangement.

Sulphur containing compounds

Preparation and reactions of thiols, thioethers and sulphonic acids.

Recommended Books/references:

1 Solomons, T.W G., Fryhle, B. Craig. *Organic Chemistry*, John Wiley & Sons, Inc(2009). 2McMurry, J.E. *Fundamentals of Organic Chemistry*, Seventh edition Cengage Learning, 2013.

3 P Sykes, A Guide Book to Mechanism in Organic Chemistry, 6th Edition (1997), Orient Longman, New Delhi.

4 Morrison R. T. and Boyd R. N. Organic Chemistry, Sixth Edition Prentice Hall India, 2003.

15 Lectures

15 Lectures

15 Lectures

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attendan	Mid Term	Presentation/	End Term
	ssignm	ce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

٦

Relationship between the Course Outcomes (COs) and Program Outcomes (POs) Mapping between COs and POs

Mapping bet	ween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand preparation, properties and reactions of haloalkanes and haloarenes	PO1
CO2	Understand preparation, properties and reactions of alcohols and phenols	PO5
CO3	Learning of name reactions related to carbonyl compounds.	PO5
CO4	Understand preparation, properties and reactions of Carboxylic acids.	PO5
CO5	Use the synthetic chemistry learnt in this course to do functional group transformations.	PO1 &PO3
CO6	To propose possible mechanisms for any relevant reaction.	PO2

		Enhanc ement in Advanc ed Scientifi	Develo pment of critical, logical	Demonstr ate interdisci plinary approach	Learning of fundame ntal concepts and	Orienta tion towards researc h and develop	Acquiri ng capabilit y to work indepen	Understa nding of impact of chemical	Fostering communi cation skills	Ethica l aware ness and	Capabilit y to deal with professio nal responsi	Systema tic and coherent understa nding of theoretic	Appre ciate the techni ques for the	Learn proble m solvin g appro	Apply princip les ofche mistry to
		c knowle dge about chemist ry	and innovati ve thinking		instrume ntation technique s	ment	dently as well as a member of the diverse team.	s on the environ ment		digital literac y	bilities	al and practical concepts	qualita tive and quantit ative analysi s	ach	addres s societa l proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 108A	ORGAN IC CHEMIS TRY-II	3	3		3	3						3		3	
1=weakly	y mapped; 2	2= modera	itely mapp	bed; 3=stron			me and Co	ourse Mor	ning						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10	PSO1	PSO 2	PSO 3	PSO	4
C01	3														
CO2					3										
CO3					3										
CO4					3										
CO5	3		3												
CO6		3													
			1	=lightly ma	pped	2= moo	derately m	apped	3=stro	ongly ma	apped				

BSCH158A	Organic Chemistry-II Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics knowledge of organic compounds				
Co-requisites					

- 1. To enable the student for hands on learning by experiments.
- 2. To generate confidence among students to perform reactions or analysis.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the identification of elements and functional group of unknown organic compounds by sequential procedures.

CO2. Understand the organic synthesis by changing one compound into another.

CO3. Analyze the difference between green synthesis and conventional synthesis.

CO4. Learn about purification of substances.

CO5. Learn about the environment safety at the time of performing experiment.

Catalog Description

This course contains identification of elements and functional group of unknown organic compounds by sequential procedures. Acetylation, bromination, nitration, green synthesis, oxidation and reduction reactions are the major component of the syllabus.

Course Content

30 lecture

(List of experiments given are suggestive. One experiment from each group to be demonstrated)

1.Identification of elements (N, S, and halogen) and Functional group tests for alcohols, phenols, carbonyl, carboxylic acid and amine group of compounds.

2. Organic preparations:

i. Acetylationofoneofthefollowingcompounds: amines (aniline, o-, m-, p-toluidines and o-, m-, p-anisidine) and phenols (β -naphthol, vanillin, salicylic acid) by any one method: (Using conventional method. and Using green chemistry approach)

ii. Benzolyationofoneoftheamines(aniline,o-,m-,p-toluidinesando-,m-,p-anisidine)andone of the phenols (β -naphthol, resorcinol, p-cresol) by Schotten-Baumannreaction.

- iii. Oxidation of ethanol/ isopropanol (Iodoform reaction).
- iv. Bromination (anyone)
- a. Acetanilide by conventionalmethods
- b. Acetanilide using green approach (Bromate-bromidemethod)
- v. Nitration: (anyone)
- a. Acetanilide/nitrobenzene by conventionalmethod
- b. Salicylic acid by green approach (using ceric ammoniumnitrate).

vi. Selective reduction of *meta*dinitrobenzene to *m*-nitroaniline.

vii. Reduction of *p*-nitrobenzaldehyde by sodiumborohydride.

viii. Hydrolysis of amides andesters.

ix. Semicarbazone of any one of the following compounds: acetone, ethyl methyl ketone, cyclohexanone,benzaldehyde.

x. *S*-Benzylisothiouronium salt of one each of water soluble/ insoluble acids (benzoic acid,oxalic acid, phenyl acetic acid and phthalicacid).

xi. Aldol condensation with either conventional or greenmethod.

xii. Benzil-Benzilic acidrearrangement.

Collected solid samples may be used for recrystallization, melting point and TLC.

Recommended Books/References:

1 Mann, F.G. & Saunders, B.C. *Practical Organic Chemistry*, Pearson Education(2009) 2 Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R. *Practical Organic Chemistry*, *5th Ed.* Pearson(2012)

3 Ahluwalia, V.K.&Aggarwal, R. ComprehensivePracticalOrganicChemistry:Preparationand *Quantitative Analysis*, University Press(2000)

4 Ahluwalia, V.K. & Dhingra, S. *Comprehensive Practical Organic Chemistry: Qualitative Analysis,* University Press(2000).(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes / Viva-Voce		PracticalExamin ation
Weightage (%)	20		20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the identification of elements and functional group of unknown organic compounds by sequential procedures.	PO4
CO2	Understand the organic synthesis by changing one compound into another.	PO6
CO3	Analyze the difference between green synthesis and conventional synthesis.	PO7
CO4	Learn about purification of substances.	PO4
CO5	Learn about the environment safety at the time of performing experiment.	PO7

		Enhance		Demonstr	Learning		Acquirin		Fostering		Capabilit	Systema	Apprec	Learn	Apply
		ment in	Develop	ate	of	Orientat	g	Understa	communi	Ethica	y to deal	tic and	iate the	proble	princip
		Advanc	ment of	interdisci	fundame	ion	capabilit	nding of	cation	1	with	coherent	techniq	m	les
		ed	critical,	plinary	ntal	towards	y to	impact	skills	aware	professio	understa	ues for	solvin	ofchem
		Scientifi	logical	approach	concepts	researc	work	of		ness	nal	nding of	the	g	istry to
		с	and		and	h and	indepen	chemical		and	responsib	theoretic	qualita	appro	address
		knowled	innovati		instrume	develop	dently as	s on the		digital	ilities	al and	tive	ach	societa
		ge about	ve		ntation	ment	well as a	environ		literac		practical	and		1
		chemistr	thinking		technique		member	ment		У		concepts	quantit		proble
		У			S		of the						ative		ms
							diverse						analysi		
							team						S		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH	Organi														
158A	c														3
	Chemi				3		3	3				3			
	stry-II				5		5	5				5			
	Practic														
	als														
1=weakly	mapped	2 = moder	rately map	ped 3=stror	igly mapped										
								l Course N							
CO	PO1	PO	2 PO		PO5	POG	6 PO'	7 PO	8 PO9	PO	10 PO1	1 PSC	D1 PS	02	PSO3
CO1				3											
CO2						2									
CO3							3					3			
CO4				3										3	
CO5							5								
		•	•	1=lightly	mapped	2= r	noderately	mapped	3=s	trongly	mapped	·	•	·	

UCCS155A	Communication Skills	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure					
Co-requisites					

- 1. Understand the basics of Grammar to improve written and oral communication skills.
- 2. Understand the correct form of English with proficiency
- 3. Improve student's personality and enhance their self-confidence.
- 4. Improve professional communication.
- 5. Enhance academic writing skills.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember the components and principles of effective communication.

CO2. Understand the factors that influence communication, such as culture, gender, and nonverbal cues.

CO3. Apply effective communication techniques in different scenarios, such as presentations, group discussions, and written reports.

CO4. Analyze the effectiveness of various communication techniques and strategies in different contexts.

CO5. Evaluate the effectiveness of communication strategies in achieving desired outcomes.

CO6. Create coherent and persuasive written documents, such as reports or essays.

Catalog Description

This learning program with its practice-based learning tasks will facilitate the learners to enhance their communication skills in a modern and globalized context, enhance their linguistic and communicative competence and hone their interpersonal skills.

Course Content

UNIT I

6 Lectures

Introduction to Communication: Importance of Communication Skills, Meaning, Forms & Types of Communication; Process of Communication; Principles of Effective Communication/7Cs, Barriers in Communication (Interpersonal, Intrapersonal and Organizational).

UNIT II

Academic Writing: Précis (Summary – Abstract – Synopsis – Paraphrase – Précis: Methods), Letter & Résumé (Letter Structure & Elements – Types of letter: Application & Cover -Acknowledgement – Recommendation – Appreciation – Acceptance – Apology – Complaint –Inquiry).Writing a proposal and synopsis. Structure of a research paper. Citations and plagiarism.

UNIT III

Technology-Enabled Communication: Using technology in communication tasks, E-mails, tools for constructing messages, Computer tools for gathering and collecting information; Different virtual medium of communication.

UNIT IV

Building Vocabulary: Word Formation (by adding suffixes and prefixes); Common Errors; Words Often Confused; One word substitution, Homonyms and Homophones; Antonyms &Synonyms, Phrasal Verbs, Idioms & Proverbs (25 each); Commonly used foreign words(15 in number);

UNIT V

Personality Development: Etiquettes& Manners; Attitude, Self-esteem & Self-reliance; Public Speaking; Work habits (punctuality, prioritizing work, bringing solution to problems), Body Language: Posture, Gesture, Eye Contact, Facial Expressions; Presentation Skills/ Techniques.

Textbook [TB]:

Kumar, Sanjay and Pushplata. Communication Skills. Oxford University Press, 2015.

Reference Books/Materials

1. Mitra, Barun K. *Personality Development and Soft Skills*. Oxford University Press, 2012.

2. Tickoo, M.L., A. E.Subramanian and P.R.Subramaniam.*Intermediate Grammar, Usage and Composition*. Orient Blackswan, 1976.

3. Bhaskar, W.W.S., AND Prabhu, NS., " English Through Reading", Publisher: MacMillan,1978

4. Business Correspondence and Report Writing" -Sharma, R.C. and Mohan K. Publisher: Tata McGraw Hill1994

5. Communications in Tourism & Hospitality- Lynn Van Der Wagen, Publisher: HospitalityPress

6. Business Communication-K.K.Sinha

7. Essentials of Business Communication By Marey Ellen Guffey, Publisher: ThompsonPress

- 8. How to win Friends and Influence People By Dale Carnegie, Publisher: Pocket Books
- 9. Basic Business Communication By Lesikar&Flatley, Publisher Tata McGraw Hills

10. Body Language By Allan Pease, Publisher SheldonPress

6 Lectures

6 Lectures

6 Lectures

6 Lectures

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A Attenda		Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Remember the components and principles of effective communication.	PO8							
CO2	Understand the factors that influence communication, such as culture, gender, and nonverbal cues.	PO8							
CO3	Apply effective communication techniques in different scenarios, such as presentations, group discussions, and written reports.	PO10							
CO4	Analyze the effectiveness of various communication techniques and strategies in different contexts.	PO8							
CO5	Evaluate the effectiveness of communication strategies in achieving desired outcomes.	PO8. PO5							
CO6	Create coherent and persuasive written documents, such as reports or essays.	PO5							

		Enhanc		Demonst	Learnin		Acquiri		Fosterin		Capabili	System	Appre	Learn	Apply
		ement	Develo	rate	g of	Orient	ng	Underst	g	Ethic	ty to	atic and	ciate	probl	princi
		in	pment	interdisci	fundame	ation	capabili	anding	commun	al	deal	coheren	the	em	ples
		Advan	of	plinary	ntal	toward	ty to	of	ication	awar	with	t	techni	solvi	ofche
		ced	critical,	approach	concepts	S	work	impact	skills	eness	professi	underst	ques	ng	mistry
		Scienti	logical		and	researc	indepen	of		and	onal	anding	for the	appro	to
		fic	and		instrume	h and	dently	chemica		digita	responsi	of	qualit	ach	addres
		knowle	innovat		ntation	develo	as well	ls on		1	bilities	theoreti	ative		S
		dge	ive		techniqu	pment	as a	the		litera		cal and	and		societ
		about	thinkin		es		membe	environ		cy		practica	quanti		al
		chemis	g				r of the	ment				1	tative		proble
		try					diverse					concept	analys		ms
							team					S	is		
Cours	Course														
e	Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code										_					
SHEL	Commu														
155A	nication					6			1, 2, 4, 5		3				
10011	Skills														
1=weakly	y mapped 2	= moderat	ely mappe	ed 3=strong	ly mapped								L		
						Program	me and C	ourse Maj	pping						
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSC)4
CO1								3							
CO2								3							
CO3										3					
CO4								3							
CO5					3			3							
CO6					3										
			1	=lightly ma	pped	2= mo	derately m	apped	3=str	ongly m	apped				

BSCH110A	Intellectual property right (IPR) and business skills for chemists	L	Т	Р	С
Version 1.0		2	0	0	2
Total Contact Hours	30				
Pre-requisites/Exposure	NA				
Co-requisites					

1. To aware the students about the Intellectual Property Rights.

2. To familiarize the students with the different types of IP and importance of protecting IP.

3. To give an understanding of the IP laws in International prospective.

4. To explain the key business concepts and current challenges and opportunities in the market.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental concepts and principles of intellectual property rights (IPR) related to chemistry.

CO2. Understand the importance of IPR in promoting innovation, protecting inventions, and fostering business growth.

CO3. Apply strategies and techniques for conducting intellectual property searches, prior art analysis, and patent landscape assessments.

CO4. Analyze and evaluate real-world case studies and scenarios involving intellectual property rights in the chemical industry.

CO5. Evaluate the competitive landscape and identify opportunities for leveraging intellectual property assets to gain a competitive advantage in the chemical industry.

CO6. Create a comprehensive intellectual property protection plan for a hypothetical chemical invention or innovation.

Catalog Description

This Intellectual property has increasingly assumed a vital role with the rapid pace of technological, scientific and medical innovation that we are witnessing today. Moreover, changes in the global economic environment have influenced the development of business models where intellectual property is a central element establishing value and potential growth. In India several new legislations for the protection of intellectual property rights (IPRs) have been passed to meet the international obligations under the WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS). Intellectual property has therefore grown into one of the world's biggest and fastest-growing fields of law thereby necessitating the demand for IP professionals well versed in this area to deal with (IPRs) across the national and intern The study of different International agreements as Word Trade Organization (WTO), Paris Convention helps in understanding various laws in India Licensing and technology transfer.

for the chemistry-using industries, its role in India and global economies and Financial aspects of business with case studies for better knowledge.

The application of Chemistry in Industry makes clear the current challenges and opportunities

Course Content

UNIT I

Introduction to Intellectual Property: Historical Perspective, Different Types of IP, Importance of protecting IP. Copyrights Introduction, How to obtain, Differences from Patents. Trade Marks Introduction, How to obtain, Different types of marks – Collective marks, certification marks, service marks, Trade names, etc. Differences from Designs. Patents Historical Perspective, Basic and associated right, WIPO, PCT system, Traditional

Knowledge, Patents and Healthcare - balancing promoting innovation with public health, Software patents and their importance for India.

UNIT II

Geographical Indications, Definition, rules for registration, prevention of illegal exploitation, importance to India.Industrial Designs, Definition, How to obtain, features, International design registration.Layout design of integrated circuits, Circuit Boards, Integrated Chips, Importance for electronic industry. Trade Secrets. Introduction, Historical Perspectives, Scope of Protection, Risks involved and legal aspects of Trade Secret Protection.

UNIT III

Different International agreements

1. World Trade Organization (WTO):

(i) General Agreement on Tariffs & Trade (GATT), Trade Related Intellectual Property Rights (TRIPS) agreement

(ii) General Agreement on Trade related Services (GATS)

(iii) Madrid Protocol

(iv) Berne Convention

(v) Budapest Treaty

2.Paris Convention

WIPO and TRIPS, IPR and Plant Breeders Rights, IPR and Biodiversity IP Infringement issue and enforcement – Role of Judiciary, Role of law enforcement agencies – Police, Customs etc.

UNIT IV

Business Basics

Key business concepts: Business plans, market need, project management and routes to market. Chemistry in Industry, Current challenges and opportunities for the chemistry-using industries, role of chemistry in India and global economies. Financial aspects Financial aspects of business with case studies.

8 Lectures

8 Lectures

7 Lectures

7 Lectures

Textbooks

1. V.K AHUJA, Law Relating to INTELLECTUAL PROPERTY RIGHTS, Lexis Nexis.

Reference Books/Materials

1. Guru, M. & Rao, M.B. Understanding Trips: Managing Knowledge in Developing Countries, Sage Publications (2003).

2. Ganguli, P. Intellectual Property Rights: Unleashing the Knowledge Economy, Tata McGraw-Hill (2001).

3. Miller, A.R. & Davis, M.H. Intellectual Property: Patents, Trademarks and Copyright in a Nutshell, West Group Publishers (2000).

4. Watal, J. Intellectual property rights in the WTO and developing countries, Oxford University Press, New Delhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm ent	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember fundamental concepts and principles of intellectual property rights (IPR) related to chemistry.	PO3,PO10
CO2	Understand the importance of IPR in promoting innovation, protecting inventions, and fostering business growth.	PO3,PO5,PO10
CO3	Apply strategies and techniques for conducting intellectual property searches, prior art analysis, and patent landscape assessments.	РОЗ
CO4	Analyze and evaluate real-world case studies and scenarios involving intellectual property rights in the chemical industry.	PO3,PO5,PO6,PO10
CO5	Evaluate the competitive landscape and identify opportunities for leveraging intellectual property assets to gain a competitive advantage in the chemical industry.	РОЗ
CO6	Create a comprehensive intellectual property protection plan for a hypothetical chemical invention or innovation.	PSO4

		Enhanc	Develo	Demonstr	Learning	Orienta	Acquiri	Underst	Fostering	Ethic	Capabilit	Systema	Appro	Learn	Apply
					of		-		-		-	•	Appre		Apply
		ement	pment	ate		tion	ng	anding	communi	al	y to deal	tic and	ciate	probl	princip
		in	of	interdisci	fundame	toward	capabilit	of	cation	aware	with	coherent	the	em	les
		Advanc	critical,	plinary	ntal	S	y to	impact	skills	ness	professio	understa	techni	solvin	of che
		ed	logical	approach	concepts	researc	work	of		and	nal	nding of	ques	g	mistry
		Scientif	and		and	h and	indepen	chemica		digita	responsi	theoreti	for the	appro	to
		ic	innovati		instrume	develo	dently	ls on the		1	bilities	cal and	qualita	ach	address
		knowle	ve		ntation	pment	as well	environ		literac		practical	tive		societal
		dge	thinkin		techniqu		as a	ment		у		concept	and		proble
		about	g		es		member					S	quantit		ms
		chemist					of the						ative		
		ry					diverse						analysi		
		5					team						s		
Course	Cours														
Code	e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code															
	Intelle														
	ctual														
	proper													1	3
	ty														
	right														
BSCH	(IPR)														
	and			2, 5	1	3					2				
110A	busine														
	SS														
	skills														
	for														
	chemi														
	st														
		1.0	1 . 1	1 /											

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

]	Program	me and C	Course M	apping					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO 2	PSO 3	PSO4
										10				
CO1			3							3				
CO2			3		3					3				
CO3			3											
CO4			3		3	3				3				
CO5			3											
CO6														3
	1=lightly mapped					2= moo	derately n	napped	3=	strongl	y mapped	•		

BSCS104A	INTRODUCTIONTOCOMPUTERSAND PROGRAMMING IN PYTHON	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Advanced of Computer communication				
Co-requisites					

1. Provide an understanding of the role computation can play in solving problems.

2. Master the fundamentals of writing Python scripts.

3. Learn core Python scripting elements such as variables and flow control structures.

4. Discover how to work with lists and sequence data.

5. Position students so that they can compete for projects and excel in subjects with programming components.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental concepts in computer science, including programming languages, algorithms, and data structures.

CO2. Understand the purpose and functions of different software and hardware components in a computer system.

CO3. Apply programming concepts and techniques using Python to solve simple to moderate complexity problems.

CO4. Analyze and debug Python programs to identify and resolve errors or issues.

CO5. Evaluate the efficiency and effectiveness of algorithms and data structures used in Python programming.

CO6. Create and implement algorithms and data structures suitable for specific programming scenarios.

Catalog Description

Introduction to Computer and Programming in Python is intended for students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems and to help students, regardless of their major, feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python 3.5 programming language.

Course Content

UNIT I

15 LECTURES

Introduction to Programming: Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.)Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:Flowchart/Pseudo code with examples. From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code

UNIT II

Introduction to Python: The basic elements of python, Branching Programs, Control Structures, Strings and Input, Iteration, String Manipulation, Guess and Check, Approximations, Bisection, Functions, Scoping and Abstraction: Functions and scoping, Specifications, Recursion, Global variables, Modules, Files

UNIT III

Classes and Object: Oriented Programming: Abstract Data Types and Classes, Inheritance, Encapsulation and Information Hiding, Handling Exceptions, Decorators

UNIT IV

Simple Algorithms and Data structures: File Handling, Search Algorithms, Sorting, Algorithms, Hash Tables

TEXTBOOKS:

1. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India

Reference Books

1. R. Nageswara Rao, "Core Python Programming", Dreamtech

2. Wesley J. Chun. "Core Python Programming, Second Edition", Prentice Hall

3. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", Wiley

4. Kenneth A. Lambert, "Fundamentals of Python, First Programs", CENGAGE Publication

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A Attenda		Mid Term	Presentation/	End Term	
	ssignm	nce	Exam	Assignment/ etc.	Exam	
	ent			_		
Weightage (%)	10	10	20	10	50	

15 LECTURE

15 LECTURE

15 LECTURE

Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Remember fundamental concepts in computer science, including programming languages, algorithms, and data structures.	PO4, PSO1				
CO2	Understand the purpose and functions of different software and hardware components in a computer system.	РОЗ				
СОЗ	Apply programming concepts and techniques using Python to solve simple to moderate complexity problems.	PO3, PSO3				
CO4	Analyze and debug Python programs to identify and resolve errors or issues.	PO2				
CO5	Evaluate the efficiency and effectiveness of algorithms and data structures used in Python programming.	PO4				
CO6	Create and implement algorithms and data structures suitable for specific programming scenarios.	PO4				

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

		Enhanc	Develo	Demonst	Learnin	Orient	Acquiri	Underst	Fosterin	Ethic	Capabil	System	Appre	Lear	Apply
		ement	pment	rate	g of	ation	ng	anding	g	al	ity to	atic	ciate	n	princi
		in	of	interdisc	fundam	toward	capabil	of	commu	awar	deal	and	the	probl	ples
		Advan	critical	iplinary	ental	s	ity to	impact	nication	eness	with	cohere	techni	em	ofche
		ced	critical			researc	work	of	skills	and	professi	nt	ques	solvi	mistry
			, 10 minut	approac	concept			chemic	SKIIIS		•	underst	for		,
		Scienti	logical	h	s and	h and	indepe			digit	onal			ng	to
		fic	and		instrum	develo	ndently	als on		al	responsi	anding	the	appro	addres
		knowle	innova		entation	pment	as well	the		litera	bilities	of	qualit	ach	S
		dge	tive		techniqu		as a	environ		cy		theoreti	ative		societ
		about	thinkin		es		membe	ment				cal and	and		al
		chemis	g				r of the					practic	quanti		proble
		try					diverse					al	tative		ms
							team					concept	analys		
												S	is		
Cours e Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO 3	PSO4
	Introdu														
	ction														
	То													3	
	Compu														
BSCS	ters														
104A	And		3	2, 3	5, 6							1			
	Progra														
	mming														
	In														
	Python														
	i yuuon														

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO	PSO	PSO4
										10		2	3	
CO1				3							3			
CO2			3											
CO3			3										3	
CO4		3												
CO5				3										
CO6				3										
	1=lightly mapped2= moderately mapped3=strongly mapped													

BSCS150A	INTRODUCTION TO COMPUTERS	L	Т	Р	С
	AND PROGRAMMING IN PYTHON				
	LAB				
Version 1.0		0	0	2	1
Total Contact Hours	15				
Pre-requisites/Exposure	Practical learning				
Co-requisites					

2. Master the fundamentals of writing Python scripts.

3. Learn core Python scripting elements such as variables and flow control structures.

4. Discover how to work with lists and sequence data.

5. Position students so that they can compete for projects and excel in subjects with programming components.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental concepts and principles of computer programming and software development.

CO2. Understand the purpose and functionality of different software tools and utilities used in Python programming.

CO3. Apply programming concepts and techniques in Python to solve practical problems and implement algorithms.

CO4. Analyze and debug Python programs to identify and resolve errors or issues.

CO5. Evaluate the correctness and functionality of Python programs based on given specifications and requirements.

CO6. Create and integrate various programming concepts and techniques to build comprehensive Python applications.

Course Content

.

15 lecture

List of l	Experiments	
1	Develop programs to implement list	2 lab hours
2	Develop programs to implement Dictionary	2 lab hours
3	Develop programs to implement tuples	2 lab hours
4	Develop programs to understand the control structures of python	2 lab hours
5	Develop programs to implement function with stress on scoping	2 lab hours
6	Develop programs to implement classes and objects	2 lab hours
7	Develop programs to implement exception handling.	2 lab hours
8	Develop programs to implement linear search and binary search.	2 lab hours
9	Develop programs to implement insertion sort	2 lab hours
10	Develop programs to implement bubble sort.	2 lab hours
11	Develop programs to implement quick sort.	2 Labs
12	Develop programs to implement heap sort.	2 Labs

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember fundamental concepts and principles of computer programming and software development.	PO4, PSO1
CO2	Understand the purpose and functionality of different software tools and utilities used in Python programming.	PO3, PSO1
CO3	Apply programming concepts and techniques in Python to solve practical problems and implement algorithms.	PO4
CO4	Analyze and debug Python programs to identify and resolve errors or issues.	PO2
CO5	Evaluate the correctness and functionality of Python programs based on given specifications and requirements.	PSO2
CO6	Create and integrate various programming concepts and techniques to build comprehensive Python applications.	PO5

		Enhanc	Develo	Demonst	Learning	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	em	ples
		Advanc	critical,	plinary	ntal	s	ty to	impact	ication	eness	with	t	techni	solvi	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and	"Ppromon	and	h and	indepen	chemica	5	digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualit	ach	addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	ative		s
		dge	thinkin		techniqu	I · ·	as a	ment		су		cal and	and		societ
		about	g		es		membe			5		practica	quanti		al
		chemist	0				r of the					1	tative		proble
		ry					diverse					concept	analys		ms
		5					team					s	is		
Cours e Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCS 150A	Introdu ction To Compu ters And Progra mming In Python Lab		3	2	1,3	3						1, 2	2	3	

1=weakly mapped 2= moderately mapped 3=strongly mapped

						Pro	gramme	and Cou	rse Map	ping				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PSO1	PSO 2	PSO 3	PSO4
CO1				3							3			
CO2			3								3			
CO3				3										
CO4		3										3		
CO5												3		
CO6			1		3									
	1	1	1:	=lightly n	napped	2	= modera	itely map	ped	3=stron	igly mappe	d	1	1

BSCH201A	Physical Chemistry-II	L	Т	Р	C
Version 3.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Physical Chemistry (Upto class XII)				
Co-requisites					

SEMESTER III

Course Objectives

1. To explain the basic concepts of thermodynamics such as system, state, state postulate, equilibrium, properties, process and cycle

2. To distinguish between Open, Closed and Isolated systems, Microscopic and Macroscopic approaches, Intensive and Extensive properties

3. To define zeroth law of thermodynamics and explain the concept of pressure, temperature, specific volume and temperature scales.

4. To apply the above concepts to solve simple chemistry problems.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental concepts in thermodynamics.

CO2. Understand the laws of thermodynamics and their applications in studying chemical systems.

CO3. Apply the concepts learned to solve simple chemistry problems involving thermodynamic processes, including energy transfer, work calculations, and state changes.

CO4. Analyze data from thermodynamic experiments or measurements, and draw conclusions based on thermodynamic principles.

Catalog Description

The topic of thermodynamics helps students in understanding the laws of thermodynamics and concepts. The concept of Partial molar quantities and its attributes relate properties to concentration. The knowledge of dilute solution and its properties helps students in understanding the concept of system, variables, heat, work, and laws of thermodynamics. The concept of heat of reactions and use of equations in calculations of bond energy, enthalpy, etc.enables students to make use of thermodynamics in day to day activities. The understanding of the concept of entropy; reversible, irreversible processes enables them to calculate entropy using 3rd law of thermodynamics. Joule Thompson effects, Gibbs- Helmholtz equation; Maxwell relations.makes a clear scenario of the daily routine appliances utilising the concept of thermodynamics. Four colligative properties: (i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure explain the freezing of water, use of pressure cooker, removal of snow using solid carbon dioxide.

Course Content

Unit I:

Introduction to thermodynamicsIntensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics. First law: Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions.

Unit II:

Thermochemistry; Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data, effect of temperature (Kirchhoff's equations), pressure on enthalpy of reactions.

Second LawConcept of entropy; thermodynamic scale of temperature, statement of the second law of thermodynamics; molecular and statistical interpretation of entropy.Calculation of entropy change for reversible and irreversible processes.

Unit III:

Third law of thermodynamics Third Law of thermodynamics, residual entropy, calculation of absolute entropy of molecules. **Free Energy Functions** Gibbs and Helmholtz energy; variation of S, G, A with T, V, P; Free energy change and spontaneity. Relation between Joule-Thomson coefficient and other thermodynamic parameters; inversiontemperature; Gibbs-Helmholtz equation; Maxwell relations; thermodynamic equation of state.

Unit IV:

Partial molar quantitiesPartial molar quantities, dependence of thermodynamic parameters on composition; Gibbs-Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases.**Dilute solutions**Dilute solutions; lowering of vapour pressure, Raoult's and Henry's Laws and their applications. Excess thermodynamic functions. Thermodynamic derivation using chemical potential to derive relations between the four colligative properties: [(i) relative lowering of vapour pressure, (ii) elevation of boiling point, (iii) Depression of freezing point, (iv) osmotic pressure] and amount of solute. Applications in calculating molar masses of normal, dissociated and associated solutes in solution.

Text Books

1 Atkins P. and De Paula, J. Physical Chemistry Tenth Ed., OUP, 2014. 2 2 Castellan, G. W. Physical Chemistry 4th Ed., Narosa, 2004.

15 Lectures

15 Lectures

15 Lectures

15 Lectures

Reference Books/Materials

1 Engel, T. and Reid, P. Physical Chemistry 3rd Ed., Prentice Hall, 2012.

2 McQuarrie, D. A. and Simon, J. D. Molecular Thermodynamics Viva Books, 2004.

3 Roy, B. N. Fundamentals of Classical and Statistical Thermodynamics Wiley, 2001

4 Commonly Asked Questions in Thermodynamics. CRC Press, 2011.

5 Levine, I .N. Physical Chemistry 6th Ed., Tata Mc Graw Hill, 2010.

6 Metz, C.R. 2000 solved problems in chemistry, Schaum Series, 2006.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs						
	Course Outcomes (COs)						
CO1	Remember fundamental concepts in thermodynamics	PO4					
CO2	Understand the laws of thermodynamics and their applications in studying chemical systems.	PSO1					
CO3	Apply the concepts learned to solve simple chemistry problems involving thermodynamic processes, including energy transfer, work calculations, and state changes.	PO2, PSO3					
CO4	Analyze data from thermodynamic experiments or measurements, and draw conclusions based on thermodynamic principles.	PO5					

r		1	1			1		1	1	1	1	1	1	l	1
		Enhanc	Develo	Demonstr	Learning	Orienta	Acquiri	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ement	pment	ate	of	tion	ng	nding of	communi	1	y to deal	tic and	iate the	probl	princip
		in	of	interdisci	fundame	towards	capabilit	impact	cation	aware	with	coherent	techniq	em	les
		Advanc	critical,	plinary	ntal	researc	y to	of	skills	ness	professio	understa	ues for	solvin	ofchem
		ed	logical	approach	concepts	h and	work	chemical		and	nal	nding of	the	g	istry to
		Scientifi	and		and	develop	indepen	s on the		digital	responsi	theoretic	qualita	appro	address
		c	innovati		instrume	ment	dently	environ		literac	bilities	al and	tive	ach	societa
		knowle	ve		ntation		as well	ment		У		practical	and		1
		dge	thinking		technique		as a					concepts	quantit		proble
		about			S		member						ative		ms
		chemist					of the						analysi		
		ry					diverse						S		
							team								
Course	Cours														
Code	e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code	e mie														
	Physic														
BSCH	al											2		3	
201A	Chemi		3		1	4									
20111	stry-II														
	Sul y II														
1=weakly	y mapped	d; 2= mode	erately mag	pped; 3=stro	ongly mappe	ed									
						Program	nme and (Course Ma	pping						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO 2	PSO 3	PSO)4
										10					
CO1				3											
CO2											3				
CO3		3											3		
CO4					3										
		I	I	1=lightly m	apped	2= mo	oderately n	napped	3=str	ongly m	apped	1		1	
L															

BSCH251A	Physical Chemistry-II Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Physical Chemistry				
Co-requisites					

. To perform time-bound experiments in order to do kinetic studies.

1. To learn about equilibrium and study it experimentally.

2. To understand physical parameters like, critical solution temperature, and distribution coefficient.

3. To observe the phenomenon of adsorption using activated charcoal.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental principles and concepts related to adsorption, kinetics, critical solution temperature, and equilibrium.

CO2. Understand the experimental procedures and techniques used in adsorption, kinetics, critical solution temperature, and equilibrium experiments.

CO3. Apply experimental techniques to perform adsorption experiments and measure adsorption capacities.

CO4. Analyze and interpret experimental data obtained from adsorption, kinetics, critical solution temperature, and equilibrium experiments.

CO5. Evaluate impact and significance of experimental results and findings in advancing the understanding of adsorption, kinetics, critical solution temperature, and equilibrium principles. CO6. Create strategies and procedures to optimize adsorption capacities, reaction rates, critical solution temperature determinations, and equilibrium measurements.

Catalog Description

This course imparts the basic concepts and protocols of experiments based on distribution method, equilibrium, and chemical kinetics. It enables them to experimentally work out physical parameters, like, critical solution temperature, and partition coefficient. It also discusses about the theory of adsorption and method to confirm Freundlich and Langmuir isotherm.

Course Content

List of Experiments

1. Determination of critical solution temperature and composition of the phenol-water system and to study the effect of impurities on it.

2. Study the equilibrium of at least one of the following reactions by the distribution method:

(i) $I_2(aq) + I^- \rightarrow I_3^-(aq)$

(ii) Cu $^{2+}$ (aq) + nNH₃ \rightarrow Cu(NH₃)_n

3. Study the kinetics of the following reactions.

a. Acid hydrolysis of methyl acetate with hydrochloric acid.

b. Saponification of ethyl acetate.

4. Adsorption: Verification of Freundlich and Langmuir isotherms for adsorption of acetic acid and selected organic dye(s) on activated charcoal.

(Use of calorimeter for calculation of heat of reactions may be demonstrated)

Practical Books

1. Khosla, B. D.; Garg, V. C. & amp; Gulati, A. Senior Practical Physical Chemistry, R. Chand, New

Delhi, 2011.

2. Garland, C. W.; Nibler, J. W. & amp; Shoemaker, D. P. Experiments in Physical Chemistry, Eighth

Edition, McGraw-Hill(2003).

3. Halpern, A. M. and McBane, G. C. Experimental Physical Chemistry, Third Edition, W, H. Freeman (2003).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					
``					

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program
CO1	Remember fundamental principles and concepts related to adsorption, kinetics, critical solution temperature, and	PO1
CO2	Understand the experimental procedures and techniques used in adsorption, kinetics, critical solution temperature, and	PO5
CO3	Apply experimental techniques to perform adsorption experiments and measure adsorption capacities.	PO2
CO4	Analyze and interpret experimental data obtained from adsorption, kinetics, critical solution temperature, and	PO4
CO5	Evaluate impact and significance of experimental results and findings in advancing the understanding of adsorption, kinetics,	PO1
CO6	Create strategies and procedures to optimize adsorption capacities, reaction rates, critical solution temperature	PO4

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	Learning of fundament al concepts and instrument ation techniques	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemicals on the environm ent	Fostering communic ation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsibi lities	Systemat ic and coherent understa nding of theoretic al and practical concepts	the	proble m solvin g appro	Apply principl es ofchem istry to address societal proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH2 51A	Physic al Chemis try-II Practic als	2	2		1	3	2	2			1	3	3	2	
1=weakly	y mapped	l; 2= mode	erately map	oped; 3=stro	ongly mappe				•						
СО	PO1	PO2	PO3	PO4	PO5	Program PO6	nme and OPO7	Course Ma	PO9	DO	PSO1	PSO 2	PSO 3	PSO	24
	rui	r02	rUs	r04	105	FUO	rU/	FUð	109	PO 10	1901	150 2	1503	rsu	74
CO1	3														
CO2					3										
CO3		3													
CO4				3											
CO5	3														
CO6				3											
				1=lightly n	napped	2= m	oderately 1	napped	3=str	ongly m	apped				

BSCH203A	ORGANIC CHEMISTRY-III	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of organic chemistry and reaction mech	anis	m		
Co-requisites					

1. To enable the students to understand Nitrogen containing functional groups and their reactions.

- 2. To familiarize the students with poly nuclear hydrocarbons and their reactions.
- 3. To enable the students to understand Heterocyclic compounds and their reactions.
- 4. Classification, structure, mechanism of reactions of few selected alkaloids and terpenes.

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember the methods used for the synthesis of amines and heterocycles.

CO2. Understand the structures, stability, and properties of amines, polynuclear hydrocarbons, and five-membered and six-membered heterocycles.

CO3. Apply the methods of synthesis to prepare amines and heterocycles.

CO4. Analyze and compare the reactivity and properties of different types of amines and heterocycles.

CO5. Evaluate the importance and limitations of different synthetic methods for heterocycles. CO6. Create synthetic routes for the preparation of complex heterocyclic compounds.

Catalog Description

This course contains structure, stability, methods of synthesis and reactions of amine and their derivatives. The importance of polynuclear hydrocarbon discussed with applications. The course will apprise students about the synthesis, reactions and mechanism of substitution reactions of five membered and six membered heterocycles like furan, pyrrole, pyridine, thiophene and indole etc. This course also comprise of some natural products as alkaloids and terpenes.

Course Content

UNIT I

Nitrogen Containing Functional Groups

Preparation and important reactions of nitro and compounds, nitriles and isonitriles Amines: Effect of substituent and solvent on basicity; Preparation and properties: Gabriel phthalimide synthesis, Carbylamine reaction, Mannich reaction, Hoffmann's exhaustive methylation, Hofmann- elimination reaction; Distinction between 1°, 2° and 3° amines with Hinsberg reagent and nitrous acid. Diazonium salts: Preparation and syntheticapplications.

15 Lectures

UNIT II

Polynuclear Hydrocarbons

Reactions of naphthalene phenanthrene and anthracene Structure, Preparation and structure elucidation and important derivatives of naphthalene and anthracene; Polynuclear hydrocarbons.

UNIT III

Heterocyclic Compounds

Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containingoneheteroatom;Synthesis,reactionsandmechanismofsubstitutionreactionsofFuran,

Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine, Structure elucidation of indole, Fischer indole synthesis and Madelung synthesis), Structure elucidation of quinoline and isoquinoline, Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner-Miller synthesis, Bischler- Napieralski reaction, Pictet-Spengler reaction, Pomeranz-Fritsch reaction Derivatives of furan: Furfural and furoicacid.

UNIT IV

Alkaloids

Natural occurrence, General structural features, Isolation and their physiological action Hoffmann's exhaustive methylation, Emde's modification, Structure elucidation and synthesis of Hygrine and Nicotine. Medicinal importance of Nicotine, Hygrine, Quinine, Morphine, Cocaine, and Reserpine.

Terpenes

Occurrence, classification, isoprenerule; Elucidation of structure and synthesis of Citral, Neraland α -terpineol.

Recommended Text Books/references:

1. Morrison, R. T., Boyd, R. N., Bhatterjee, S.K., Organic Chemistry, 7thEdn., Pearson.

2. Acheson, R.M. *Introduction to the Chemistry of Heterocyclic compounds*, John Welly &Sons (1976).

3. Solomons, T.W., Fryhle Craig, *Organic Chemistry*, John Wiley & Sons, Inc(2009).

4. McMurry, J.E. *Fundamentals of Organic Chemistry*, 7th Ed. Cengage Learning India Edition, 2013.

5. Kalsi, P. S. Organic reactions and their mechanisms, New Age Science(2010).

6. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; *Organic Chemistry*, Oxford UniversityPress Inc., New York(2001).

7. Singh, J.; Ali, S.M. & Singh, J. *Natural Product Chemistry*, Prajati Parakashan(2010).

8. Bansal R. K. *Heterocyclic Chemistry: Syntheses, Reactions and Mechanisms*, New Age, Third Edition (1999).

15 Lectures

15 Lectures

15 Lectures

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember the methods used for the synthesis of amines and heterocycles.	PO1
CO2	Understand the structures, stability, and properties of amines, polynuclear hydrocarbons, and five-membered and six-membered heterocycles.	PO3
CO3	Apply the methods of synthesis to prepare amines and heterocycles.	PO3 & PO2
CO4	Analyze and compare the reactivity and properties of different types of amines and heterocycles.	PO6
CO5	Evaluate the importance and limitations of different synthetic methods for heterocycles.	PO1
CO6	Create synthetic routes for the preparation of complex heterocyclic compounds.	PO1

		Enhanc ement in Advan ced Scienti fic knowle dge about chemis try	Develo pment of critical, logical and innovat ive thinkin g	Demonst rate interdisci plinary approach	Learnin g of fundame ntal concepts and instrume ntation techniqu es	Orient ation toward s researc h and develo pment	Acquiri ng capabili ty to work indepen dently as well as a membe r of the diverse team	Underst anding of impact of chemica ls on the environ ment	Fosterin g commun ication skills	Ethic al awar eness and digita l litera cy	Capabili ty to deal with professi onal responsi bilities	System atic and coheren t underst anding of theoreti cal and practica 1 concept s	Appre ciate the techni ques for the qualit ative and quanti tative analys is	Learn probl em solvi ng appro ach	Apply princi ples ofche mistry to addres s societ al proble ms
Cours e Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 203A	ORGA NIC CHEMI STRY- III	2	3	3			3							3	3

1=weakly mapped; 2= mode	rately mapped; 3=	-strongly mapped
, , , , , , , , , , , , , , , , , , ,	J Tr J	0, TT

					Prog	ramm	e and	Cours	se Map	ping				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PSO1	PSO	PSO	PSO4
										10		2	3	
CO1	3													
CO2			3											
CO3		3	3											
CO4						3								
CO5	3													
CO6	3													
	1=li	ghtly 1	nappe	d	2=	mode	rately	mappe	ed		3=stron	gly ma	apped	

BSCH253A	ORGANIC CHEMISTRY-III Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics knowledge of organic compounds				
Co-requisites					

- 1. To enable the student for hands on learning by experiments.
- 2. To generate confidence among students to perform reactions or analysis.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Remember principles and techniques of qualitative analysis.
- CO2. Understand the theory and principles of spectroscopy.
- CO3. Apply the qualitative analysis techniques to identify functional groups.

CO4. Analyze results of qualitative analysis, spectroscopic studies.

CO5. Evaluate the accuracy of qualitative analysis, synthesis and yield of organic compounds. CO6. Create a systematic qualitative analysis scheme for the identification of unknown organic compounds.

Catalog Description

This course gives idea about Qualitative analysis of unknown organic compounds by simple and spectroscopic methods. The preparation of Methyl Orange and extraction of caffeine are some innovative approach of this syllabus. This syllabus also provides exposure towards analysis of carbohydrates.

Course Content

30 lecture

1. Qualitative analysis of unknown organic compounds containing monofunctional groups (carbohydrates, aryl halides, aromatic hydrocarbons, nitro compounds, amines and amides) and simple bifunctional groups, for e.g. salicylic acid, cinnamic acid, nitrophenols, etc.

2. Identification of functional groups of simple organic compounds by IR spectroscopy andNMR spectroscopy (IR and NMR of simple organic compounds may be done wherever facilities are available, otherwise sample spectra may be provided for simple organic compounds like Ethanol, Aniline, Phenol, acetic acid, other simple aldehydes, carboxylic acid, etc., for identification of functional groups. References from standard spectroscopy books may also be taken for such purpose for enhancing students understanding andskill).

- 3. Preparation of methyl orange.
- 4. Extraction of caffeine from tealeaves.

5. Analysis of Carbohydrate: aldoses and ketoses, reducing and non-reducing sugars usingsimple labprocedures.

Recommended Books/References:

- 1. Vogel, A.I. Quantitative Organic Analysis, Part 3, Pearson(2012).
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education(2009)

3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. *PracticalOrganicChemistry*, 5th *Ed.*, Pearson(2012)

4. Ahluwalia, V.K. & Aggarwal, R. *Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis,* University Press(2000).

5. Ahluwalia, V.K. & Dhingra, S. *Comprehensive Practical Organic Chemistry: Qualitative Analysis,* University Press(2000).

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct o	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember principles and techniques of qualitative analysis.	PO2
CO2	Understand the theory and principles of spectroscopy.	PO2
CO3	Apply the qualitative analysis techniques to identify functional groups.	PO1
CO4	Analyze results of qualitative analysis, spectroscopic studies.	PO1
CO5	Evaluate the accuracy of qualitative analysis, synthesis and yield of organic compounds.	PO1 &PO4
CO6	Create a systematic qualitative analysis scheme for the identification of unknown organic compounds.	PO7

		Enhanc		Demonstr	Learning		Acquiri		Fostering		Capabilit	Systema	Appre	Learn	Apply
			Davala		of	Orienta		Underste	-	Ethico	-	-			
		ement	Develo	ate			ng	Understa	communi	Ethica	y to deal	tic and	ciate	proble	princip
		1n	pment	interdisci	fundame	tion	capabilit	nding of	cation	1	with	coherent	the	m	les
		Advanc	of	plinary	ntal	towards	y to	impact	skills	aware	professio	understa	techni	solvin	ofche
		ed	critical,	approach	concepts	researc	work	of		ness	nal	nding of	ques	g	mistry
		Scientifi	logical		and	h and	indepen	chemical		and	responsi	theoretic	for the	appro	to
		с	and		instrume	develop	dently	s on the		digital	bilities	al and	qualita	ach	addres
		knowle	innovati		ntation	ment	as well	environ		literac		practical	tive		S
		dge	ve		technique		as a	ment		у		concepts	and		societa
		about	thinking		s		member			5			quantit		1
		chemist	timiting		5		of the						ative		proble
															-
		ry					diverse						analysi		ms
							team						S		
Course	Course														
Code	Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH2	ORGA														
53A	NIC												3		
	CHEMI														
	STRY-	3	3		3			3				3			
	III														
	Practica														
	ls														

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSO4
CO1		3												
CO2		3												
CO3	3													
CO4	3													
CO5	3			3										
	1=lightly mapped2= moderately mapped3=strongly mapped													

BSCH205A	Analytical Techniques of Chemistry	L	Т	Р	С
Version 2.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Analytics techniques				
Co-requisites					

- 1. Familiarize with fundamental of analytical chemistry.
- 2. To establish an appreciation of the role of chemistry in quantitative analysis.
- 3. To provide experience in some scientific methods employed in analytical chemistry.
- 4. To develop some understanding of the professional and safety responsibilities residing in working on chemical analysis.

Course Outcomes

On completion of this course, the students will be able to

CO1. Know about the principles and applications of modern chemical instrumentation, experimental design, and data analysis.

CO2. Acquire the knowledge of the underlying chemical and physical of instrumental methods of analysis, including electronic and vibrational spectroscopy, UV-Visible spectroscopy, and electro-analytical techniques.

CO3. Enable students to communicate scientific information clearly and accurately, both in oral and in written forms and apply the concepts to analyze data

CO4. Idea about the composition of written laboratory reports that summarize experimental procedures and the accurately present and interpret data.

CO5. Learn to work with others as part of a team to solve scientific problems

CO6. Interpret results of different gravimetric analysis methods

Catalog Description

This course gives an introduction to analytical chemistry and an overview of important analytical methods and their range of application within detection of inorganic and organic compounds. Important analytical quantitative techniques from classical methods, electrochemical methods, spectrochemical / spectrophotometric methods, and separation techniques are reviewed. As a part of this course, a project work is also to be carried out; relevant topics will be announced at semester start. There will be an excursion at the end of the semester.

Course Content

UNIT I

15 Lectures

Qualitative and quantitative aspects of analysis:

Tools in analytical chemistry and their applications, Sampling, evaluation of analytical data, errors, accuracy and precision, statistical test of data; F, Q and t-test, rejection of data, and confidence intervals.

93

15 Lectures

Spectroscopy:

UNIT II

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law.

Vibration spectroscopy: Basic principles of instrumentation, sampling techniques. Application of IR spectroscopy for characterization through interpretation of data, Effect and importance of isotope substitution. Introduction to Raman spectra

UV-Visible Spectrometry: Basic principles of instrumentation, principles of quantitative analysis using estimation of metal ions from aqueous solution, Determination of composition of metal complexes using Job's method of continuous variation and mole ratio method.

UNIT III

Thermal analysis:

Theory of thermogravimetry (TG and DTG), instrumentation, estimation of Ca and Mg from their mixture.Electroanalytical methods: Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. determination of pKa values.

UNIT IV

Separation techniques:

Solvent extraction: Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and non- aqueous media. Chromatography techniques: Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms: frontal, elution and displacement methods. Qualitative and quantitative aspects of chromatographic methods of analysis using LC, GLC, TLC and HPLC.

Recommended Books/Reference Books:

1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

2. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing California, USA, 1988.

3. Christian, G.D, Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

4. Harris, D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.

5. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Saunder College Publications, (1998).

6. Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles Harwood John Wiley 1979.

7. Ditts, R.V. Analytical Chemistry; Methods of separation, van Nostrand, 1974.

8. Khopkar, S. M., Basic Concepts of Analytical Chemistry, New Age (Second edition)1998 9.Skoog D.A., Holler F.J., Nieman T.A., Principles of instrumental analysis, 5th Edn., Brooks & Cole (1997).

15 Lecture

15 Lectures

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Know about the principles and applications of modern chemical instrumentation, experimental design, and data analysis.	PO4
CO2	Acquire the knowledge of the underlying chemical and physical of instrumental methods of analysis, including electronic and vibrational spectroscopy, UV-Visible spectroscopy, and electro-analytical techniques.	PO5
CO3	Enable the students how to communicate scientific information clearly and accurately, both in oral and in written forms.	PO6
CO4	Idea about the composition of written laboratory reports that summarize experimental procedures and the accurately present and interpret data.	PO4
CO5	Learn to work with others as part of a team to solve scientific problems.	PO6
CO6	Interpret different gravimetric analysis methods	PO4

Course Code BSCH	Course Title Analyt ical Techni	Enhanc ement in Advanc ed Scientifi c knowle dge about chemist ry PO1	Develop ment of critical, logical and innovati ve thinking PO2	Demonstr ate interdisci plinary approach PO3	Learnin of fundam ntal concept and instrum ntation techniq s	tion towa resea ts h and deve e ment	rds c rc y l w lop ii d a a a n o d te	Acquirin apabilit to vork ndepen lently s well s a nember of the liverse eam	Understa nding of impact of chemical s on the environ ment PO7	Fostering communi cation skills PO8	Ethica 1 aware ness and digital literac y PO9	Capabilit y to deal with professio nal responsi bilities	Systema tic and coherent understa nding of theoretic al and practical concepts PSO1	Apprec iate the techniq ues for the qualita tive and quantit ative analysi s PSO2	Learn proble m solvin g appro ach PSO3	Apply principl es of che mistry to address societal proble ms PSO4
205A	ques of Chemi stry															
1=weakly	5	l; 2= mode	erately ma	pped; 3=st	rongly ma	apped										
-	, 11				0.		ogran	nme and	Course N	Japping						
СО	PO	1 PO	2 PC	P 3 P C	94 P	D5	PO6	PO7	PO8	B PO9	PO1	0 PSO1	PSO	2 PSO	3	PSO4
CO1					;											
CO2						3										
CO3							3									
CO4					3											
CO5							3									
CO6					3											
	•	•	•	1=lightl	/ mapped		2= mc	oderately	mapped	3=	strongly	mapped	•	•	•	

BSCH255A	Analytical Techniques of Chemistry	L	Т	Р	С
	Practicals				
Version 2.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of chromatography and solvent extraction	on			
Co-requisites					

1. To introduce some analytical techniques like flame photometer, infra-red

spectrophotometer

- 2. To learn about determination of water quality parameters like COD, BOD and DO.
- 3. To analyse the composition of soil.
- 4. To learn about qualitative analysis of metal ions from binary mixture.
- 5. Performing risk assessment of chemical experiments and chemical analytical activity

Course Outcomes

On completion of this course, the students will be able to

CO1. Remember fundamental principles and concepts of analytical chemistry.

CO2. Understand the working principles and theories of analytical techniques.

CO3. Apply appropriate analytical technique and knowledge of instrument operation

CO4. Analyze experimental data obtained from chemical analyses using appropriate

statistical tools.

CO5. Evaluate the reliability and validity of analytical results obtained from various techniques.

CO6. Creat new analytical methods or protocols for specific applications.

Catalog Description

This course covers some simple methods for determination water quality parameter like COD, BOD, and DO, major ions present in soil and aerated drinks. The course also gives hand on experience of flame photometer, chromatography and spectrophotometry techniques.

Course Content

30 lecture

(Recommended to carry out at least two experiments from each section)

I. Chromatography:

i. Paper chromatographic separation of Fe^{3+} , Al^{3+} , and Cr^{3+} .

ii.Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the Rfvalues.

- iii.SeparateamixtureofSudanyellowandSudanRedbyTLCtechniqueandidentifythemonthe basis of their Rfvalues.
- iv.Chromatographic separation of the active ingredients of plants, flowers and juices by TLC

II. Solvent Extractions:

i.ToseparateamixtureofNi²⁺&Fe²⁺bycomplexationwithDMGandextractingtheNi²⁺-DMG complex in chloroform, and determine its concentration byspectrophotometry.

ii.Determine the pH of the given aerated drinks fruit juices, shampoos andsoaps.

iii.DeterminationofNa,Ca,Liincoladrinksandfruitjuicesusingflamephotometrictechniques.

III. Analysis of soil:

i.Determination of pH ofsoil.

ii.Total solublesalt

iii.Estimation of calcium, magnesium, phosphate, nitrate

IV. Ionexchange:

i.Determination of exchange capacity of cation exchange resins and anion exchangeresins.

ii.Separation of metal ions from their binarymixture.

iii.Separation of amino acids from organic acids by ion exchangechromatography.

V. Spectrophotometry

i.Determination of pKa values of indicator using spectrophotometry.

- ii.Structural characterization of compounds by infraredspectroscopy.
- iii.Determination of dissolved oxygen inwater.

iv.Determination of chemical oxygen demand(COD).

v.Determination of Biological oxygen demand(BOD).

vi.Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by Job's method.

Recommended text books/references:

1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

2. Willard, H.H. *et al.*: *Instrumental Methods of Analysis*, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA,1988.

3. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

4. Harris, D.C. *Exploring Chemical Analysis*, 9th Ed. New York, W.H. Freeman, 2016.

5. Khopkar, S.M. *Basic Concepts of Analytical Chemistry*. New Age International Publisher, 2009.

6. Skoog, D.A. Holler F.J. and Nieman, T.A. *Principles of Instrumental Analysis*, Cengage Learning India Edition.

7. Mikes, O. & Chalmes, R.A. *Laboratory Handbook of Chromatographic & Allied Methods*, Elles Harwood Ltd.London.

8. Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, NewYork, 1974.

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember fundamental principles and concepts of analytical chemistry.	PO4
CO2	Understand the working principles and theories of analytical techniques.	PO7
CO3	Apply appropriate analytical technique and knowledge of instrument operation	PO5
CO4	Analyze experimental data obtained from chemical analyses using appropriate statistical tools.	PO5
CO5	Evaluate the reliability and validity of analytical results obtained from various techniques.	PO5
CO6	Creat new analytical methods or protocols for specific applications.	PO4

		Enhanc	Develo	Demonst	Learning	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princip
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	em	les
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	solvi	of che
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and	11	and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualita		addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	tive		s
		dge	thinkin		techniqu	•	as a	ment		су		cal and	and		societa
		about	g		es		member			-		practica	quanti		1
		chemist					of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					s	is		
Cours e Code	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 255A	Analy tical Techn iques of Chemi stry Practi cals		4		1	6		3				2	3	5	

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

						Program	me and C	ourse Ma	pping					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSO4
CO1				3										
CO2							3							
CO3					3									
CO4					3									
CO5					3									
CO6				3										
			1=li	ghtly map	ped	2= mod	lerately m	apped	3=s	trongly n	napped	•		

BSCS109A	Data Analysis and Visualization	L	Т	Р	С
Version 1.0		2	-	-	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Python				
Co-requisites					

The objective of this course is to teach students the concepts of Python Programming Language with Libraries.

Course Outcomes

On completion of this course, the students will be able to learn:-

CO1. Remember the features and characteristics of different Python libraries and modules.

CO2. Understand fundamental concepts and syntax of the Python programming language.

CO3. Apply Python programming concepts to solve simple programming problems.

CO4. Analyze data structures and algorithms to optimize code efficiency and performance.

CO5. Evaluate the effectiveness and suitability of different libraries for specific programming tasks.

CO6. Create Python programs to solve real-world problems

Catalog Description

Data Analysis with Python is for everyone who would like to create meaningful insight out of the data with the power of Numpy, Pandas, Matplotlib& Seaborn. The course has the right recipe to equip student with the right set of skill to ingest, clean, merge, manipulate, transform and finally visualize the data to create the meaning out of the data at hand.

Course Content

UNIT – I

NumPy: Array and vectorized computation: Multidimensional array object. Creating ndarrays, arithmetic with numpy array, basic indexing and slicing, Boolean indexing, transposing array and swapping axes, universal functions, array-oriented programming with arrays, conditional logic as arrays operations, file input and output with array

UNIT -II

Pandas: Pandas data structure, series, DataFrame, Index Object, Reindexing, dropping entities from an axis, indexing, selection and filtering, integer indexes, arithmetic and data alignment, function application and mapping, soring and ranking, correlation and covariance, unique values, values controls and membership, reading and writing data in text format

7 lecture

8 lecture

Visualization with Matplotlib: Figures and subplots, colors, markers, line style, ticks, labels,

UNIT -IV

UNIT -III

Plotting with pandas and seaborn: line plots, bar plots, histogram, density plots, scatter and point plots, facet grids and categorical data

Textbooks

1.Fabio Nelli, Python Data Analytics 2nd Edition, Apress.

legends, annotation and drawing on sublots, matplotlib configuration

<u>Reference Books/Materials</u>

1. Python for Data Analysis: A Complete Beginner Guide for Python basics, Numpy, Pandas, Seaborn, Bokeh and Matplotlib for Data Analysis, AI Publishing LLC.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Remember the features and characteristics of different Python libraries and modules.	PO2
CO2	Understand fundamental concepts and syntax of the Python programming language.	PO3
CO3	Apply Python programming concepts to solve simple programming problems.	PO4
CO4	Analyze data structures and algorithms to optimize code efficiency and performance.	PO2
CO5	Evaluate the effectiveness and suitability of different libraries for specific programming tasks.	PO3
CO6	Create Python programs to solve real-world problems	PO4

8 lecture

7 lecture

		Enhanc ement in Advanc ed Scientifi c knowle dge about chemist ry	Develop ment of critical, logical and innovati ve thinking	Demonstr ate interdisci plinary approach	Learning of fundame ntal concepts and instrume ntation technique s	Orienta tion towards researc h and develop ment	Acquirin g capabilit y to work indepen dently as well as a member of the diverse team	Understa nding of impact of chemical s on the environ ment	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsi bilities	Systema tic and coherent understa nding of theoretic al and practical concepts	Apprec iate the techniq ues for the qualita tive and quantit ative analysi s	Learn proble m solvin g appro ach	Apply princip les ofchem istry to address societa 1 proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCS 109A	Data Analysi s and Visualiz ation		3	2	3							3		3	

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

						Program	me and Co	ourse Map	oping					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSO4
CO1		3												
CO2			3											
CO3				3										
CO4		3												
CO5			3											
CO6				3										
	1=lightly mapped 2= moderately mapped 3=strongly mapped													

BSCS159A	Data Analysis and Visualization Lab	L	Т	Р	С
Version 1.0		-	-	2	1
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Python				
Co-requisites					

The objective of this course is to teach students the concepts of Python Programming Language with Libraries.

Course Outcomes

On completion of this course, the students will be able to learn:-

CO1. Practical understanding of data analysis with Python package like NumPy and Pandas.

CO2. Implementation of visualization tool (matplotlib and seaborn) so that one will be able to visualize and make correct decision based on the data.

CO3. To practice with real life data to feel confident of the topic and be able to ready to work on data analysis project or interview.

Catalog Description

This course complements ETCS109A. It enables them to write algorithms/programs for implementing python libraries such as NumPy, Pandas, Seaborn etc. The list of experiments helps organizing the data in variety of ways using python and to solve the given problem efficiently.

Course Content

The list of experiments will be based upon syllabus of ETCS109A.

Textbooks

1.Fabio Nelli, Python Data Analytics 2nd Edition, Apress.

<u>Reference Books/Materials</u>

1. Python for Data Analysis: A Complete Beginner Guide for Python basics, Numpy, Pandas, Seaborn, Bokeh and Matplotlib for Data Analysis, AI Publishing LLC.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct o	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes / Viva-Voce		PracticalExamin ation
Weightage (%)	20		20	10	50

_

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Theoretical and practical understanding of data analysis with Python package like NumPy and Pandas.	PO2
CO2	The knowledge of visualization tool (matplotlib and seaborn) so that one will be able to visualize and make correct decision based on the data.	PO3
CO3	To practice with real life data to feel confident of the topic and be able to ready to work on data analysis project or interview,	PO4

		Enhanc	Develop	Demonstr	Learning	Orienta	Acquirin	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ement	ment of	ate	of	tion	g	nding of	communi	1	y to deal	tic and	iate the	proble	princip
		in	critical,	interdisci	fundame	towards	s capabilit	impact	cation	aware	with	coherent	techniq	m	les
		Advanc	logical	plinary	ntal	researc	y to	of	skills	ness	professio	understa	ues for	solvin	ofchem
		ed	and	approach	concepts	h and	work	chemical	581115	and	nal	nding of	the		istry to
		Scientifi	innovati	approach	and	develop	indepen	s on the		digital		theoretic	qualita	g	address
						-	-			literac	responsi bilities	al and	tive	appro ach	
		C	ve		instrume	ment	dently	environ			onnues			ach	societa
		knowle	thinking		ntation		as well	ment		У		practical	and		1
		dge			technique		as a					concepts	quantit		proble
		about			S		member						ative		ms
		chemist					of the						analysi		
		ry					diverse						S		
							team								
Course	Course														
Code	Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Data														
	Analysi													3	
BSCS	s and														
159A	Visualiz		3	2	3							3			
	ation														
	Lab														
	240														

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping													
СО	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO PSO1 PSO PSO PSO4 10 2 3 <													
CO1		3												
CO2			3											
CO3				3										
	1=lig	ghtly n	nappec	1	2= moderately mapped						3=strongly mapped			

SEMESTER IV

BSCH202A	Physical Chemistry-III	L	Т	Р	С
Version 4.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

Course Objectives

1. To be able to derive Gibbs phase rule and apply it to calculate degrees of freedom.

2. To learn about different terms and equations related to chemical kinetics.

3. To be able to write mathematical expressions for adsorption isotherms.

4. To understand enzyme catalysis and derive relevant equations for Michaelis- Menten mechanism.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the concepts of phases and components, and use them to derive Gibbs phase rule.

CO2. Draw phase diagrams of several different types of systems.

CO3. Write the differential and integrated rate laws for zero, first, and second order reactions.

CO4. Explain the kinetics of complex reactions, and work out the related rate laws.

CO5. Learn about different types of catalysis, along with their respective mechanisms.

CO6. Understand the surface phenomenon, adsorption, along with its isotherms.

Catalog Description

The course explains the basic concepts as Phases, components, Gibbs phase rule, Phase diagrams and applications. It enables the students to understand chemical kinetics, typeofreactions, determination of rate, theories of reaction rate, steady state approximation. It will help the students to work out the order and molecularity. The course will explain the kinetics of complex reactions with the help of suitable examples. It also explains the concept of catalysis, along with enzyme catalysis. Finally, the students will learn about different aspects of adsorption.

Unit I: Phase Equilibria

Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactiveandreactivesystems; Clausius-Clapeyronequationandits applications to solid-liquid, liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications.Phasediagramsforsystemsofsolid-liquidequilibriainvolvingeutectic,congruent and incongruent melting points, solid solutions. Three component systems, water-chloroformacetic acid system, triangular plots. Binary solutions: Gibbs-Duhem-Margules equation, its derivationandapplicationstofractionaldistillationofbinarymiscibleliquids(idealandnonideal), azeotropes, leverrule, partial miscibility of liquids, CST, miscible pairs, steam distillation. Nernst distribution law: its derivation and applications.

Unit II:

Chemical Kinetics

Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated rate laws for first, second and fractional order reactions, pseudounimolecular reactions, determination of the order, kinetics of complex reactions (limited to first order): (i)Opposing reactions (ii)parallel reactions and (iii)consecutive reactions and their differential rate equations (steady-state approximation in reaction mechanisms) (iv) chain reactions. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates.

Unit III:

Catalysis

Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis- Menten mechanism, acid-base catalysis.

Unit IV:

Surface chemistry

Physical adsorption, chemisorption, adsorption isotherms (Freundlich, Temkin, Derivation of Langumuiradsorptionisotherms, surfaceareadetermination), BET theory of multilayerad sorption (no derivation), Adsorption insolution.

Text Books

1. AtkinsP.W.andDePaulaJ., Physical Chemistry, (tenthedition) OxfordUniversityPress, 2014.

- 2. Castellan, G. W. Physical Chemistry, 4th Ed., Narosa, 2004.
- 3. McQuarrie, D. A. & Simon, J. D., Molecular Thermodynamics, Viva Books, 2004.

8 Lectures

12 Lectures

8 Lectures

12 Lectures

Reference Books/Materials

1. Engel, T. & Reid, P. *Physical Chemistry* Third Edition, Prentice-Hall, 2012.

2. Zundhal, S.S. *Chemistry concepts and applications* Cengage India, 2011 6 Ball, D. W. *Physical Chemistry* Cengage India, 2012.

- 3. Mortimer, R. G. *Physical Chemistry 3rd Ed.*, Elsevier: NOIDA, UP, 2009.
- 4. Levine, I. N. *Physical Chemistry 6th Ed.*, Tata McGraw-Hill, 2011.
- 5. Metz, C. R. *Physical Chemistry 2nd Ed.*, Tata McGraw-Hill,2009.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the concepts of phases and components, and use them to derive Gibbs phase rule.	PO1
CO2	Draw phase diagrams of several different types of systems.	PO4
CO3	Write the differential and integrated rate laws for zero, first, and second order reactions.	PO1, PSO1
CO4	Explain the kinetics of complex reactions, and work out the related rate laws.	PO1
CO5	Learn about different types of catalysis, along with their respective mechanisms.	PO1, PSO2
CO6	Understand the surface phenomenon, adsorption, along with its isotherms.	PO4, PO5

		Enhance	Develop	Demonstra	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systemat	Appreci	Learn	Apply
		ment in	ment of	te	of	ion	g	nding of	communic	1	y to deal	ic and	ate the	proble	principl
		Advance	critical,	interdiscip	fundament	towards	capabilit	impact of	ation	aware	with	coherent	techniq	m	es
		d	logical	linary	al	research	y to work	chemicals	skills	ness	professio	understa	ues for	solvin	ofchem
		Scientifi	and	approach	concepts	and	independ	on the		and	nal	nding of	the	g	istry to
		c	innovati		and	develop	ently as	environm		digital	responsibi	theoretic	qualitat	appro	address
		knowled	ve		instrument	ment	well as a	ent		literac	lities	al and	ive and	ach	societal
		ge about	thinking		ation		member			у		practical	quantita		proble
		chemistr			techniques		of the					concepts	tive		ms
		у					diverse						analysis		
							team								
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH2 02A	Physic al Chemis try-III	3			3	2						2	2		

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

							Program	nme and	Course N	lapping					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2				3											
CO3	3											3			
CO4	3														
CO5	3												3		
CO6				3	3										
	1=lightly mapped						2 = mo	derately n	napped	3:	=strongly	mapped			

BSCH252A	Physical Chemistry-III Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

1. To be able to calibrate and take measurements on a conductometer and a potentiometer.

2. To learn to perform acid-base and redox titrations.

3. To find out dissociation constant of a weak acid.

4. To calculate the values of cell constant, equivalent conductance from the conductance measurements.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the theory behind conductance of solutions.

CO2. Understand the theory behind potentiometric measurements.

CO3. Take readings on the instruments, conductometer and potentiometer.

CO4. Perform several acid-base titrations via conductometric titrations as well as potentiometric titrations.

CO5. Explain equations that relate, cell constant, equivalent conductance, and degree of dissociation to the conductance measurements.

CO6. Perform redox titrations between Mohr's salt and potassium dichromate potentiometrically.

Catalog Description

This course imparts the basic knowledge of conductometry and potentiometry, and how these measurements can be used to calculate various parameters. This course enables the students to perform several types of acid-base titrations, and redox titrations. It also discusses the calculations of cell constant, equivalent constant, and degree of dissociation for conductance measurements.

Course Content	30 lecture
List of Experiments	
Conductometry	
1.Determination of cellconstant	
2. Equivalent conductance, degree of dissociation and dissociation constant of a w	eak acid.
3.Conductometric titrations of: Strong acid Vs. strong base (ii) Weak acid vs. stro	ng base,
(iii) Mixture of strong acid and (iv)weak acid vs. strong base, Strong acid vs. weak	kbase.

Potentiometry

Potentiometric titrations of: (i) Strong acid vs. strong base (ii) Weak acid vs. strong base (iii) Dibasic acid vs. strong base (iv) Potassium dichromate vs. Mohr'ssalt.

Recommend books/References:

1. Khosla, B.D.; Garg, V.C. and Gulati, A. Senior Practical Physical Chemistry, R. Chand New Delhi, 2011.

2.Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. *Experiments in Physical Chemistry* Eighth Edition; McGraw-Hill: New York,2003.

3.Halpern,A.M.andMcBane,G.C.*ExperimentalPhysicalChemistry3rdEd.*;W.H.Freeman& Co.: New York,2003.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs											
	Course Outcomes (COs)	Mapped										
CO1	Understand the theory behind conductance of solutions.	PO1										
CO2	Understand the theory behind potentiometric measurements	PO4, PSO1										
CO3	Take readings on the instruments, conductometer and	PO4										
CO4	Perform several acid-base titrations via conductometric	PO1										
CO5	Explain equations that relate, cell constant, equivalent	PO5, PSO2										
CO6	Perform redox titrations between Mohr's salt and	PO5										

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	Learning of fundament al concepts and instrument ation techniques	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemicals on the environm ent	Fostering communic ation skills	Ethica 1 aware ness and digital literac y	Capabilit y to deal with professio nal responsibi lities	Systemat ic and coherent understa nding of theoretic al and practical concepts	Appreci ate the techniq ues for the qualitat ive and quantita tive analysis	proble m solvin g appro	Apply principl es ofchem istry to address societal proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH2 52A	Physic al Chemis try-III Practic als	3			3	2						2	1		
1=weakly	y mapped	l; 2= mode	erately map	pped; 3=stro	ngly mappe	ed	1	I		1			1		
						Ι	Programm	e and Cou	rse Mappi	0					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 I	PO9 PO	10 PC	011 PSC	D1 PSO	2 PS	03	PSO4
CO1	3														
CO2				3							3	6			
CO3			_	3											
CO4	3														
CO5					3							3			
CO6	<u> </u>			1 1'	3	1			1		1				
				$I = l_1$	ghtly mappe	ea	2 = mode	rately map	ped	3=stro	ongly mappe	ea			

BSCH206A	Inorganic Chemistry-II	L	Т	Р	С
Version 3.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	General overview of s and p-block elements				
Co-requisites					

- 1. To learn the students about oxidation- reduction and metallurgical processes
- 2. To learn the students structure, properties and uses of s and p-block elements
- 3. To study about the shapes and uses of noble gas compounds
- 4. To enable the students to gain detailed idea about B, Si, P based inorganic polymers

Course Outcomes

On completion of this course, the students will be able to

CO1. Acquaint with general concept of oxidation and reduction.

CO2. Provide information of purification of metals by different metallurgical processes.

CO3. Emphasize on chemical properties of s and p-block elements.

CO4. Understanding about the structure and uses of compounds from s and p-block elements

CO5. Learn the compounds of noble gases and structures on the basis of VSEPR and MO theory.

CO6. Learn about the preparation of inorganic compounds.

CO7. Learn about the structural aspects of inorganic polymers and their applications.

Catalog Description

In this course students learn about the oxidation-reduction reactions and the metallurgical process for the purification of metals. Students will learn some basic concepts of inorganic chemistry and the structure, properties, uses of compounds of s and p-block elements. The course will provide basics of noble gases, preparation and properties of some noble gases compounds. The students will also get an idea about structure and applications of various inorganic polymers based on silicon, boron and phosphorus.

Course Content

UNIT I:

15 Lectures

Oxidation-Reduction and general principle of metallurgy: Redox equations, Standard Electrode Potential and its application to inorganic reactions. Occurrenceofmetalsbasedonstandardelectrodepotentials.Ellinghamdiagramsforreductionof metal oxides using carbon or carbon monoxide as reducing agent. Electrolytic Reduction, Hydrometallurgy. Methods of purification of metals: Electrolytic Kroll process, Parting process, van Arkel- de Boer process and Mond's process, Zonerefining.

UNIT II:

Chemistry of *s* and *p* Block Elements

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behavior of first member of each group. Allotropy and catenation.Complex formation

tendencyofsand*p*blockelements.Hydridesandtheirclassificationionic,covalentandinterstitial.Ba sic beryllium acetate andnitrate. Structure, bonding, preparation, properties and uses.Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine.Per-oxo acids of Sulphur inter-halogen compounds, poly-halide ions, pseudo-halogens, properties of halogens.

UNIT III:

Noble GasesOccurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF_2 , XeF_4 and XeF_6 ; Bonding in noble gas compounds (Valence bond and MO treatment for XeF_2), Shapes of noble gas compounds (VSEPR theory).

UNIT IV:

InorganicPolymers

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphagens, and poly sulphates.

Textbooks

2. Lee, J. D. Concise Inorganic Chemistry, Wiley, 5th Edn.

Reference Books/Materials

1. Douglas, B.E; Mc Daniel, D.H. & Alexander, J.J. Concepts & Models of Inorganic Chemistry 3rd Ed., John Wiley Sons, N.Y. 1994.

2. Greenwood, N.N., Earnshaw. Chemistry of the Elements, Butterworth-Heinemann. 1997.

3. Cotton, F.A. & Wilkinson, G. Advanced Inorganic Chemistry, Wiley, VCH, 1999.

4. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.

5. Miessler, G. L. & Donald, A. Tarr. Inorganic Chemistry Fourth Ed., Pearson, 2010

6. Atkins, P. W and Shriver D. N. Atkins' Inorganic Chemistry 5th Ed. Oxford University Press (2010).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

15 Lectures

15 Lectures

15 Lectures

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquaint with general concept of oxidation and reduction.	PO1
CO2	Provide information of purification of metals by different metallurgical processes.	PO1, PSO1
CO3	Emphasize chemical properties of s and p-block elements.	PO1
CO4	Understanding about the structure and uses of compounds from s and p-block elements	PO1
CO5	Learn the compounds of noble gases and structures on the basis of VSEPR and MO theory.	PO4
CO6	Learn about the preparation of inorganic compounds.	PO4, PO5
CO7	Learn about the structural aspects of inorganic polymers and their applications.	PO1, PSO1

		Enhan	Devel	Demons	Learnin	Orient	Acquir	Unders	Fosteri	Ethi	Capabi	Syste	Appr	Lear	Appl
		cemen	opmen	trate	g of	ation	ing	tanding	ng	cal	lity to	matic	eciate	n	у
		t in	t of	interdis	fundam	towar	capabil	of	commu	awar	deal	and	the	prob	princi
		Advan	critica	ciplinar	ental	ds	ity to	impact	nicatio	enes	with	cohere	techn	lem	ples
		ced	1,	У	concept	resear	work	of	n skills	s and	profess	nt	iques	solvi	ofche
		Scienti	logical	approac	s and	ch and	indepe	chemic		digit	ional	unders	for	ng	mistr
		fic	and	h	instrum	devel	ndentl	als on		al	respons	tandin	the	appr	y to
		knowl	innova		entatio	opme	y as	the		litera	ibilities	g of	qualit	oach	addre
		edge	tive		n	nt	well as	enviro		су		theoret	ative		SS
		about	thinki		techniq		a	nment				ical	and		societ
		chemi	ng		ues		memb					and	quant		al
		stry					er of					practic	itativ		probl
							the					al	е		ems
							diverse					concep	analy		
							team					ts	sis		
Cours	Cour													PSO	
e	se	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	3	PSO4
Code	Title													5	
	Inorg														
BSC	anic														
H206	Che	3			2	2						2			
А	mistr														
	y-II														

1=weakly mapped; 2= moderately mapped; 3=strong	gly mapped
---	------------

					Pr	ogramm	e and Co	ourse Ma	pping						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2	3											3			
CO3	3														
CO4	3														
CO5				3											
CO6				3	3										
CO7	3											3			
	1	1	1=lightly	y mapped	I	2 = mode	rately ma	pped	3=5	strongly	mapped	1	1	1	

BSCH254A	Inorganic Chemistry-II Practicals	L	Т	Р	С		
Version 3.0		0	0	4	2		
Total Contact Hours	30						
Pre-requisites/Exposure	Inorganic preparation and iodometric analysis						
Co-requisites							

- 1. To familiarize the students with quantitative analysis by iodometric and iodimetric titrations.
- 2. To expertise the students for inorganic salt preparation and use of analytical apparatus.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Learn the Quantitative analysis of unknown inorganic compounds.
- CO2. Study iodometric and iodometric analysis.
- CO3. Learn about inorganic salt preparation
- CO4. Learn to perform inorganic experiments with various instruments

Catalog Description

This course helps to gain knowledge of quantitative analysis by iodometric and iodimetric titrations for the estimation. This course engages the students for simple inorganic salt preparation by using appropriate analytical method and handling of instruments. Students also get idea of using special apparatus and techniques for the synthesis.

- Course Content30 lecture
- (A) Iodo / IodimetricTitrations
- (i) Estimation of Cu(II) and $K_2Cr_2O_7$ using sodium thiosulphate solution(Iodimetrically).
- (ii) Estimation of (i) arsenite and (ii) antimonyiodimetrically
- (iii) Estimation of available chlorine in bleaching powderiodometrically.
- (B) Inorganicpreparations
- (i) Cuprous Chloride, Cu₂Cl₂
- (ii) Preparation of Aluminium potassium sulphate (Potash alum) or Chromealum.

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Textbooks

1. Mendham, J., A. I. Vogel's *Quantitative Chemical Analysis* Sixth Edition, Pearson, 2009.

Reference Books/Materials

- 2. O. P. Pandey, D.N. Bajpai, S.Giri, Practical chemistry, S. Chand & Company Pvt. Ltd.
- 3. Svehala G. and Sivasankar I. B, Vogel's Qualitative Inorganic Analysis, Pearson, India, 2012.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of	Lab	Attendance	End Term
	Experiment	Record/Quizzes / Viva-Voce		PracticalExamin ation
		, , , , , , , , , , , , , , , , , , ,		ution
Weightage (%)	20	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Learn the Quantitative analysis of unknown inorganic compounds.	PO1, PSO2
CO2	Study iodometric and iodimetric analysis.	PO1, PO5
CO3	Learn about inorganic salt preparation	PO1
CO4	Learn to perform inorganic experiments with various instruments	PO4, PSO1

		Enhanc	Develo	Demonst	Learning	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply									
		ement	pment	rate	of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princip									
		in	of	interdisci	fundame	toward	capabili	of	commun	aware	deal	coheren	the	em	les									
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	ness	with	t	techni	solvi	of che									
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry									
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	appro	to									
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualita	ach	addres									
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	tive		S									
		dge	thinkin		techniqu		as a	ment		cy		cal and	and		societa									
		about	g		es		member					practica	quanti		1									
		chemist					of the					1	tative		proble									
		ry					diverse					concept	analys		ms									
							team					S	is											
Cours e Code	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4									
	Inorga																							
	nic												2											
BSCH	Chem																							
254A	istry-	3			2	2						2												
2347	II																							
	Practi																							
	cals																							
1=weakly	y mapped	l; 2= mode	erately map	oped; 3=stro	ongly mapp																			
		.							urse Mapp	0	044			~~~										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	10 P	011 PS			SO3	PSO4									
CO1	3				2								3											
CO2	3				3																			
CO3	3																							
CO4				3	1.1							3												
				1=li	ghtly mapp	ed	2 = mode	erately mag	pped	3=str	ongly map	ped		1=lightly mapped 2= moderately mapped 3=strongly mapped										

BSCH208A	Introduction to Quantum Chemistry	L	Т	Р	С			
Version 2.0		3	1	0	4			
Total Contact Hours	60							
Pre-requisites/Exposure	-requisites/Exposure Basics of Chemistry and Calculus							
Co-requisites								

- 1. To be able to appreciate the development of quantum mechanics.
- 2. To understand all the basic terms and postulates of quantum chemistry.
- 3. To write and solve Schrodinger wave equation for different systems.
- 4. To learn to carry out qualitative treatment of hydrogen and hydrogen like species.

Course Outcomes

On completion of this course, the students will be able to

CO1. Account for the basic principles and concepts of quantum chemistry.

CO2. Explain the experimental evidence for the shortcomings of classical mechanics that led to the development of quantum mechanics.

CO3. Understand and be able to explain the origin of quantized energy levels.

CO4. Write and solve Schrodinger wave equation for several different systems.

CO5. Understand valence bond and molecular approaches for hydrogen.

CO6. Perform treatment of hydrogen and hydrogen like molecules.

Catalog Description

This course imparts the basic concepts quantum mechanics. It enables them to understand the gaps in classical mechanics and how these knowledge gaps could be explained with the emergence of quantum mechanics. The course describes the fundamental terms and equations, the focus will be on Schrodinger wave equation. The course introduces the basic qualitative treatment for hydrogen and hydrogen like species.

Course Content

Unit I:

15 Lectures

Introduction to black-body radiation and distribution of energy, photo-electric effect, conceptofquantization,waveparticleduality(de-Broglie'shypothesis),Theuncertaintyprinciple, The wave function: wave function and its interpretation, conditions of normalization and Orthogonality and its significance. Basic idea about operators, eigen function and values.

Unit II:

Schrodinger equation and application to free-particle and particle in a box, boundary conditions, wave functions and energies, degeneracy, hydrogen atom, Schrodinger equation in polar coordinates, radial and angular parts of the hydrogenic orbitals, degeneracies, spherical harmonics, representations of hydrogenic orbitals.

Unit III:

Quantitative treatment of simple harmonic osciallator model, setting up of Schodinger equation and discussion of solution of wave functions. Rigid rotator model and discussion of application of Schrodinger equation.idea about transformation to spherical polar coordinate, discussion on solution,

Unit IV:

Qualitativetreatmentofhydrogenatomandhydrogen-likeions:settingupofSchrödingerequation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus. Valence bond and molecular orbital approaches, LCAO-MO treatment of H₂, H ⁺; bonding and anti-bonding orbitals, Comparison of LCAO-MO and VB treatments₂ of H₂ (only wavefunctions, detailed solution not required) and their limitations

Text Books

- 1. Laideler K. J. and Meiser J. M. Physical Chemistry Third Edition(International)1999
- 2. Levine I. N., Physical Chemistry, Fourth Edition), McGraw-Hill (International),1995.

3. McQuarrie D. A. and Simon J. D. *Physical Chemistry- A Molecular Approach*, University Science Books, 1998.

Reference Books/Materials

- 1. Chandra, A. K. Introductory Quantum Chemistry Tata McGraw-Hill (2001).
- 2. House, J. E. Fundamentals of Quantum Chemistry 2nd Ed. Elsevier: USA(2004).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

15 Lectures

15 Lectures

15 Lectures

	Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program									
CO1	Account for the basic principles and concepts of quantum chemistry.	PO1									
CO2	Explain the experimental evidence for the shortcomings of classical mechanics that led to the development of quantum	PO4									
CO3	Understand and be able to explain the origin of quantized energy levels.	PO1, PSO1									
CO4	Write and solve Schrodinger wave equation for several different systems.	PO5, PSO3									
CO5	Understand valence bond and molecular approaches for hydrogen.	PO1, PSO3									
CO6	Perform treatment of hydrogen and hydrogen like molecules.	PO1, PO5									

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	Learning of fundamen tal concepts and instrumen tation technique s	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemicals on the environm ent	Fostering communic ation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsibi lities	theoretic	techniq ues for the qualitat	proble m solvin g appro	Apply principl es ofchem istry to address societal proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH2 08A	Introdu ction to Quantu m Chemist ry	3			2	3						2		2	

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2				3											
CO3	3											3			
CO4					3									3	
CO5	3													3	
CO6	3				3										
	1=lightly mapped						2= moderately mapped 3=strongly mapped								

BSCH256A	Introduction to Quantum Chemistry Practicals	L	Т	Р	C
Version 2.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

- 1. To be able to learn about basics of computational studies.
- 2. To build molecular models.
- 3. To learn to determine enthalpy of isomerization.
- 4. To take absorbance readings on a colorimeter and use it to verify Beer's law.

Course Outcomes

On completion of this course, the students will be able to

CO1. Perform basic computational experiments.

CO2. Carry out conformational analysis of butene.

CO3. Calibrate and use a colorimeter at different wavelength filters.

CO4. Explain the dissociation constant of a weak acid and how to calculate using colorimeter.

CO5. Understand Beer's law and its applications.

CO6. Find out the concentration of unknown solution by taking absorbance values.

Catalog Description

This course imparts the basic concepts of quantum chemistry practicals. It enables the students to build molecular models and carry energy calculations of various conformations. The course discusses the concept and usage of a colorimeter and how to find out dissociation constant with the help of absorbance values. The course introduces the Beer's law and protocol required for its verification.

Course Content30 lectureList of Experiments

i) The students may be demonstrated hyperchem lab activities – building a molecular model (leveling of atoms, editing individual atoms, changing bond order, centrering, rotation of atoms), Selectionofcalculationmethod(*e.g.* forcefieldcalculation,ab-

initiosetup),displayingcalculated properties, (instructor may demonstrate Computer programs that calculate the energy of various conformations of molecules and predict the lowest energy, to learn how to construct or draw

representationsofmoleculesusingamolecularmodelingprogramcalledHyperChem(HyperCube, Inc.),to perform geometry optimizations (energy minimizations) to determine the lowest

energy conformations of molecules).

(Depending upon the availability of infrastructure facilities, instructor can demonstrate the students use of hyperchem software, Gaussian software – geometry optimization). They can be allowedforacademicvisittocomputationallabstogainknowledgeandareportmaybeconsidered forvivavoce/examination). Opensourcesoftwaresmaybeusedforlabdemonstrationandstudents may prepare a report along with viva-voce shall constitute practical examination. Instructor may encourage the students to gain hand-on experience in using open-source softwares (forperfoming various calculation as mentioned) in lab computers, periodic evaluation of which can also be accepted as conducting lab practical examination. Basic idea is to encourage the students to get knowledge without keeping any rigid practical syllabusframework).

(Examples of the computational work that can be done: Compare the optimized C-C bondlengths in ethane, ethene, ethyne and benzene. Visualize the molecular orbitals of the ethane σ bonds and ethene, ethyne, benzene and pyridine π bonds.

ii) (a) Performaconformationalanalysisofbutane.(b)Determinetheenthalpyofisomerization of *cis* and *trans* 2-butene.

iii) Visualize the electron density and electrostatic potential maps for LiH, HF, N_2 , NO and CO and comment. Relate to the dipole moments. Animate the vibrations of thesemolecules. (Software: ChemSketch, Argus Lab (<u>www.planaria-software.com</u>), TINKER 6.2

(dasher.wustl.edu/ffe), WebLab Viewer, Hyperchem, or any similarsoftware.

iv) Determination of indicator constant -colorimetry.

v) Verification of Beer's Law - Determination of concentration of solution bycolorimetry.

Suggested books/reference books:

1. Essentials of computational chemistry – Theories and models, C. J. Crammer, Wiley, 2^{nd} Edn.,

2.Principle and applications of quantum chemistry, V.K.Gupta, Elsevier, 2016.

3. Practicals in physical chemistry – a modern approach, P.S.Sindhu, Macmillan,

4. Experiments in Physical Chemistry, J.M.Wilson, R.J.Newcomb, A.R.Denaro, 2nd Edn., Elsevier.

5. A.R. Leach, Molecular Modelling Principles and Application, Longman, 2001.

6. J.M. Haile, *Molecular Dynamics Simulation Elementary Methods*, John Wiley and Sons, 1997.

7. Gupta, S.P. QSAR and Molecular Modeling, Springer - Anamaya Publishers, 2008.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes/		PracticalExamin
			Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Perform basic computational experiments.	PO1
CO2	Carry out conformational analysis of butene.	PO5
CO3	Calibrate and use a colorimeter at different wavelength filters.	PO4, PSO2
CO4	Explain the dissociation constant of a weak acid and how to calculate using colorimeter.	PO1
CO5	Understand Beer's law and its applications.	PO1, PSO1
CO6	Find out the concentration of unknown solution by taking absorbance values.	PO1

		Enhanc ement in Advanc ed Scientifi c knowle dge about chemist ry	Develo pment of critical, logical and innovati ve thinking	Demonstr ate interdisci plinary approach	Learning of fundame ntal concepts and instrume ntation technique s	Orienta tion towards researc h and develop ment	Acquiri ng capabilit y to work indepen dently as well as a member of the diverse team	nding of	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsi bilities	Systema tic and coherent understa nding of theoretic al and practical concepts	iate the techniq ues for the qualita	probl	princip les
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 256A	Introdu ction to Quantu m Chemis try Practic als	3			2	2						2	2		

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

							Program	nme and (Course M	apping					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2					3										
CO3				3									3		
CO4	3														
CO5	3											3			
	3														
CO6															
	1=lightly mapped						2= mo	derately n	apped	3=	strongly n	napped			

BSMA274A	Introduction to LaTeX	L	Т	Р	С
Version 1.0		0	0	2	1
Total Contact Hours	15				
Pre-requisites/Exposure					
Co-requisites					

The objective of the course is

- 1. To learn about a document preparation system for high-quality typesetting
- 2. To learn typesetting of complex mathematical formulas

Course Outcomes

On completion of this course, the students will be able to

CO1. Typesetting journal articles, technical reports, books, and slide presentations.

CO2. Control over large documents containing sectioning, cross-references

CO3. Automatic generation of bibliographies and indexes

Catalog Description

The course aims to introduce students to LaTeX - a high quality open-source typesetting software. LaTeX is most commonly used for medium to large technical or scientific documents, but can be used for almost any type of publication. The course will, therefore, enable students to type a report, article, or mathematical document.

Course Content

15 lecture

ntroduction to LaTeX, Benefits and comparison with word processor, Installing LaTeX, Formatting lines and paragraph, Typesetting a simple document, Text alignment, installing packagesCreating Lists, Typing Math Formulas, Environments – equations, arrays, matrices, Footnotes, Fonts, Title and headers, Sectioning, Listing references, Math styles – cases, braces, math symbols. Graphics in LaTeX, Inserting Tables and Figures, Simple pictures using PSTricks, Sample article and report, Beamer presentation, Sample presentation, Using online resources

Textbooks

1. David F. Griffiths, Desmond J. Higham, Learning LaTeX, Society for Industrial and Applied Mathematics(SIAM), 2016.

Stefan Kottwitz , LaTeX Beginner's Guide. Packt Publishing, Birmingham, UK, 2011.

3. Lamport, Leslie, LaTeX: A Document Preparation System, User's Guide and Reference Manual (2nd ed.). Addison-Wesley, 1994.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Г

Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program Outcomes								
CO1	Typesetting journal articles, technical reports, books, and slide presentations.	PO1								
CO2	Control over large documents containing sectioning, cross-references	PO1,PSO1								
CO3	Automatic generation of bibliographies and indexes	PO1, PO5								

	Enhanc	Develo	Demonstr	Learning	Orienta	Acquiri	Underst	Fostering	Ethic	Capabilit	Systema	Appre	Learn	Apply
	ement	pment	ate	of	tion	ng	anding	communi	al	y to deal	tic and	ciate	probl	princip
	in	of	interdisci	fundame	toward	capabilit	of	cation	aware	with	coherent	the	em	les
	Advanc	critical,	plinary	ntal	S	y to	impact	skills	ness	professio	understa	techni	solvi	ofche
	ed	logical	approach	concepts	researc	work	of		and	nal	nding of	ques	ng	mistry
	Scientif	and		and	h and	indepen	chemica		digita	responsi	theoreti	for the	appro	to
	ic	innovat		instrume	develo	dently	ls on the		1	bilities	cal and	qualita	ach	addres
	knowle	ive		ntation	pment	as well	environ		literac		practical	tive		S
	dge	thinkin		techniqu		as a	ment		У		concept	and		societa
	about	g		es		member					S	quantit		1
	chemist					of the						ative		proble
	ry					diverse						analysi		ms
						team						S		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Title	FUI	r02	r03	r04	FUJ	ruu	rU/	rUo	FU9	F010	1301	r302	1.202	r304
Introdu														
ction to	3				2						2			
LaTeX														

1=weakly mapped

2=moderately mapped

3=strongly mapped

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2	3											3			
CO3	3				3										
				1=light	ly mappe	d	2= mod	lerately n	napped		3=strong	ly mappe	ed		

BSCH210A	INTERNSHIP in Chemistry	L	Т	Р	С
Version 1.0		0	0	0	2
Total Contact Hours	30				
Pre-requisites/Exposure	Practical exposure				
Co-requisites					

- 1. To learn how to carry out literature surveys on the assigned topic.
- 2. To be associated with an area of research/research project and contribute towards domain knowledge through hands on.
- 3. To learn the art of technical report writing.
- 4. To learn the art of verbal communication with the help of modern presentation techniques.

Course Outcomes

On completion of this course, the students will be able to

CO1. Carry out the extensive literature survey on the topic assigned by academicians and industry experts.

CO2. Learn to write and present technical reports/articles.

CO3. Learn to analyze various methods and techniques applicable to the topic to study and contribute to domain knowledge.

CO4. Learn to analyze/evaluate the result of the experiment carried out and present the results using data visualization methods.

Catalog Description

- 1. In the end of Semester IV, students will be asked to join research/academic organizations or industries to get hands on knowledge on the selected topics.
- 2. The student will work on the assigned topic for 3-4 weeks in regular consultation with his/her assigned expert/guide.
- 3. The student will write a report based on the work carried out during internship and prepare two copies to be submitted to the office of the Head of the Department duly signed by the student and the expert.
- 4. The student will make a power point presentation based on the work carried out and mentioned in the report to the board of examiners appointed by the University in the fifth semester. The student will be evaluated based on a report and presentation.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Internal				Total				
	(Interaction of		External						
	Student with Supervisor)	Relevance of topic (20)	Presentation (20)	viva (10)	100				
Weightage (%)	50	20	20	10					

Mapping	between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Carry out the extensive literature survey.	PO1, PO3
CO2	Learn to write and present technical reports/articles.	PO1, PO5, PO8, PO9
CO3	Learn to analyze various methods and techniques applicable to the topic to study and contribute to domain knowledge.	PO2,PO3,PO4, PSO1, PSO4
CO4	Learn to analyze/evaluate the result of the experiment carried out and present the results using data visualization methods.	PO5, PO6,PSO2 and PSO3

		Enhance	Develop	Demonstra	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systemat	Appreci	Learn	Apply
		ment in	ment of	te	of	ion	g	nding of	communic	1	y to deal	ic and	ate the	proble	principl
		Advance	critical,	interdiscipl	fundament	towards	capabilit	impact of	ation	aware	with	coherent	techniq	m	es
		d	logical	inary	al	research	y to work	chemicals	skills	ness	professio	understan	ues for	solvin	ofchemi
		Scientifi	and	approach	concepts	and	independ	on the		and	nal	ding of	the	g	stry to
		с	innovati		and	develop	ently as	environm		digital	responsibi	theoretic	qualitat	appro	address
		knowled	ve		instrument	ment	well as a	ent		literac	lities	al and	ive and	ach	societal
		ge about	thinking		ation		member			у		practical	quantita		proble
		chemistr	-		techniques		of the			-		concepts	tive		ms
		y			<u>^</u>		diverse					•	analysis		
		-					team						5		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH2 10A	Interns hip in Chemi stry	3	3	3	3	3	3		3	3		3	2	3	3

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

CO		Programme and Course Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3		3												
CO2	3				3			3	3						
CO3		3	3	3								3			3
CO4					3	3							2	3	
	1=ligl	htly mapp	ed	2 = mode	erately ma	pped	3=str	ongly map	oped					1	1

BSCH301A	Inorganic Chemistry - III	L	Т	Р	С
Version 3.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of transition elements and inner transition	on e	lem	ents	5
Co-requisites					

SEMESTER V

Course Objectives

1. In order to study transition metals to understand the trends in properties and reactivity of the d-block elements

2. To explain the typical physical and chemical properties of the transition metals.

3. Describe the role of metal ions that are involved in electron-transfer reactions in biological systems.

4. To be able to name coordination compounds and to be able to draw the structure based on it's name.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the coordination numbers and geometric shapes of the complexes.

CO2. To acquire knowledge of physical and chemical composition of the transition elements complexes.

CO3. Identify the main toxicological mechanisms of metals and the biological defenses against the toxic effects.

CO4. Apply the basic principles in inorganic and general chemistry to interdisciplinary topics in the field of bioinorganic chemistry.

CO5. The students will be able to explain the fundamental concepts in coordination chemistry of transition metals.

CO6. Know the chemistry of the Lanthanides and the Actinides.

Catalog Description

This course gives an introduction to coordination chemistry and an overview of important theories like crystal field theory, molecular orbital theory and their range of application within detection of structure of coordination compounds. Important magnetic and electrical properties of transition and inner transition elements are reviewed. The present course also includes main toxicological mechanisms of metals and the biological defenses against the toxic effects.

Course Content

UNIT I

Coordination Chemistry

Werner's theory, EAN rule, piano-stool compounds, valence bond theory (inner and outer orbital complexes), Crystal field theory, d-orbital splitting, , weak and strong fields, pairing energies, factors affecting the magnitude of (Δ). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar complexes, d orbital splitting in trigonal bipyramidal, square pyramidal and cubic ligand field environments, CFSE, Variation of lattice energies, enthalpies of hydration and crystal radii variations in halides of first andsecondrowtransitionmetalseries, QualitativeaspectofLigandfieldtheory, MOdiagramsof representative coronation complexes, IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with the coordination number 4 and 6, Chelateeffect,

UNIT II

Transition Elements

General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, and ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer &Bsworth diagrams). Difference between the first, second and third transition series. Chemistry of Ti,V, CrMn, Feand Coin various oxidation states(excluding their metallurgy)

UNIT III

Lanthanoids and Actinides

Electronic configuration, oxidation states, color, spectra and magnetic behavior, lanthanide contraction, separation of lanthanides (ion-exchange method only).

UNIT IV

Bioinorganic Chemistry

Metal ions present in biological systems, classification of elements according to their action in biological system. Geochemical effect on distribution of metals.Sodium / K-pump, carbonic anhydrase and carboxypeptidase. Excess and deficiency of some trace metals. Toxicity of metal ions (Hg, Pb, Cd and As), toxicity, chelating agents in medicine. Iron and its application in bio-systems, Haemoglobin; Storage and transfer of iron.

15 Lecture

15 Lecture

15 Lecture

15 Lecture

Recommended text books/References:

1. Purcell, K.F & Kotz, J.C. *Inorganic Chemistry* W.B. Saunders Co, 1977. Huheey, J.E., *Inorganic Chemistry*, Prentice Hall, 1993.

2. Lippard, S.J. & Berg, J.M. *Principles of Bioinorganic Chemistry* Panima Publishing Company 1994.

3. Cotton, F.A. & Wilkinson, G, Advanced Inorganic Chemistry Wiley-VCH, 1999

4. Basolo,F,andPearson,R.C.*MechanismsofInorganicChemistry*,JohnWiley&Sons,NY,1

967. Greenwood, N.N. & Earnshaw A. Chemistry of the Elements, Butterworth-Heinemann, 1997.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm ent	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the coordination numbers and geometric shapes of the complexes.	PO1
CO2	To acquire knowledge of physical and chemical composition of the transition elements complexes.	PO1, PSO2
CO3	Identify the main toxicological mechanisms of metals and the biological defenses against the toxic effects.	PO3, PO4
CO4	Apply the basic principles in inorganic and general chemistry to interdisciplinary topics in the field of bioinorganic chemistry.	PO3, PSO1
CO5	The students will be able to explain the fundamental concepts in coordination chemistry of transition metals.	PO1
CO6	Know the chemistry of the Lanthanides and the Actinides.	PO1

		Enhanc	Develo	Demonst	Learnin	Orient	Acquiri	Underst	Fosterin	Ethic	Capabil	System	Appre	Lear	Apply
		ement	pment	rate	g of	ation	ng	anding	g	al	ity to	atic and	ciate	n	princi
		in	of	interdisc	fundame	toward	capabili	of	commu	awar	deal	coheren	the	probl	ples
		Advan	critical	iplinary	ntal	S	ty to	impact	nication	eness	with	t	techni	em	of che
		ced	,	approac	concepts	researc	work	of	skills	and	professi	underst	ques	solvi	mistry
		Scienti	logical	h	and	h and	indepen	chemic		digita	onal	anding	for	ng	to
		fic	and		instrume	develo	dently	als on		1	responsi	of	the	appro	addres
		knowle	innovat		ntation	pment	as well	the		litera	bilities	theoreti	qualit	ach	S
		dge	ive		techniqu		as a	environ		cy		cal and	ative		societa
		about	thinkin		es		membe	ment				practica	and		1
		chemis	g				r of the					1	quanti		proble
		try					diverse					concept	tative		ms
							team					S	analys		
													is		
Cours	Cour													PSO	
e	se	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	3	PSO4
Code	Title													5	
	Inorg														
BSCH	anic														
301A	Che	3		2	2							2	2		
501A	mistr														
	y -III														

1=weakly mapped2= moderately mapped3=strongly mapped

							Program	me and (Course M	lapping					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2	3												3		
CO3			3	3											
CO4			3									3			
CO5	3														
CO6	3														
		•		1=li	ghtly map	ped	2= moderately mapped 3=strongly mapped					mapped			

BSCH351A	Inorganic Chemistry-III Practicals	L	Т	Р	С		
Version 3.0		0	0	4	2		
Total Contact Hours	30						
Pre-requisites/Exposure	Gravimetric analysis and inorganic preparations						
Co-requisites							

- To strenghten the students with gravimetric analysis of ions.
- To expertise the students for the preparation of coordination compounds in laboratory

Course Outcomes

On completion of this course, the students will be able to CO1. To enable the students about general of Gravimetric Analysis and procedure CO2. Students have knowledge about to estimate the amount of ions in solution CO3. To enable the student about some experimental techniques of synthesis CO4. To provide the student basic knowledge of laboratory equipments and chromatography

Catalog Description

This course imparts the understanding of quantitative analysis by gravimetric method and the whole procedure to find out the amount of ions present in solution. This course helps them to get experience of synthesizing coordination complexes with different structures. This course also introduces the chromatography for the separation of ions in solution.

Course Content

30 lecture

(a)Quantitative Analysis: The following quantitative estimations are to be carried out.

(i) Estimation of nickel (II) using Dimethylglyoxime as the precipitant.

(ii) Estimation of copper as CuSCN

(iii) Estimation of iron as Fe_2O_3 by precipitating iron as $Fe(OH)_3$ through (i) Heterogeneous and Homogeneous media.

(iv) Estimation of Al (III) by precipitating with oxine and weighing as Al(oxine)₃

(aluminiumoxinate).

(b)Inorganic

Preparations:

(i) Tetraammine copper (II) sulphate, [Cu (NH₃)₄] SO₄ H₂O

(ii) Potassium trisoxalatochromate (III), K₃ [Cr (C₂O₄)₃]

(iii) Cis and trans K[Cr(C₂O₄)₂ (H₂O₂] Potassium dioxalatodiaquachromate(III)

(iv) Pentaamminecarbonato Cobalt (III) ion

(c)Paper chromatographic separation of Fe³⁺, Al³⁺, and

 Cr^{3+}

Textbooks

A I Vogel, A text book of Quantitative Inorganic Analysis (Prentice Hall)

Reference Books/Materials

3. G. Marr & B. W. Rockett, Practical Inorganic Chemistry, London; New York : Van Nostrand Reinhold, 1972.

4. O. P Pandey, D.N. Bajpai, S.Giri, Practical chemistry, S. Chand & Company Pvt. Ltd.

5. H.H Willard, L.L Meritt, I.A Dean, Instrumental Methods of Analysis, CBS Publishers, Delhi.

6. W. L. Jolly, The synthesis & characterization of Inorganic compounds, Prentice Hall. R.A. Day and A.L. Underwood, Quantitative Analysis- 3 edition, Prentice Hall India, Pvt. Ltd.New Delhi, 1977.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program						
CO1	To enable the students about general of Gravimetric Analysis and procedure	PO1,PSO1						
CO2	Students have knowledge about to estimate the amount of ions in solution	PO1						
CO3	To enable the student about some experimental techniques of synthesis	PO1,PO5						
CO4	To provide the student basic knowledge of laboratory equipments and chromatography	PO4, PSO2						

		Enhanc	Develo	Demonst	Learning	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princip
		in	of	interdisci	fundame	toward	capabili	of	commun	aware	deal	coheren	the	em	les
		Advanc	critical,	plinary	ntal	s	ty to	impact	ication	ness	with	t	techni	solvi	of che
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualita	ach	addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	tive		S
		dge	thinkin		techniqu		as a	ment		cy		cal and	and		societa
		about	g		es		member					practica	quanti		1
		chemist					of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					S	is		
Cours	Cours	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
e Code	e Title	FOI	F02	103	r04	105	100	107	100	109	1010	1301	F302	1303	1304
	Inorga														
	nic												2		2
BSCH	Chem														
351A	istry-	3			2	2						2			
	III														
	Practi														
1 11	cals		. 1	12	1 1										
l=weakly	=weakly mapped2= moderately mapped3=strongly mapped Programme and Course Mapping														
CO	PO1	PO2	PO	3 PO 4		8		PO8		PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
C01	3	PO2		<u> </u>	+ P03) PO/	PUð	PU9 1		POII	3	PSU 2	P505	P504
CO1 CO2	3											3			
CO2 CO3	3				3										
CO4				3									3		+
	1=lightly mapped 2= moderately mapped 3=strongly mapped														
L											1				

BSCH303A	Molecular Spectroscopy & Photochemistry	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Physical Chemistry				
Co-requisites					

1. To obtain theoretical and practical knowledge of modern molecular spectroscopic techniques.

2. To understand rotational, vibrational, Raman and electronic spectra, and use them to obtain information about the sample.

3. To study the concept of photochemistry and the Jablonski diagram.

4. To understand Beer-Lambert's law and its applications.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the interactions of electromagnetic radiation and matter and their applications.

CO2. Analyse and interpret spectroscopic data to obtain information about the studied sample. CO3. Explain rotational, vibrational, electronic and Raman spectra of molecules.

CO4. Understand theory and practice of common photochemical and photophysical methods.

CO5. Describe the various deactivation processes of molecular excited states.

CO6. Explain the mechanisms and kinetics of common photochemical transformations.

Catalog Description

The course explains the basic interactions between electromagnetic radiation with molecules and various types of spectra. It imparts in-depth knowledge about rotational, vibrational, and electronic spectroscopy which is useful in identifying the structure. The course explains the laws of photochemistry and Jablonski diagram. It also enables students to understand the kinetics of photochemical reactions in relation to electronic spectra and photochemistry.

Course Content

Unit I:

20 Lectures

Interaction of electromagnetic radiation with molecules and various types of spectra; Born-Oppenheimer approximation. Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution. Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.

Unit II:

20 Lectures

Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion. Electronic spectroscopy: Franck-Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence, dissociation and predissociation.

Unit III:

20 Lectures

Photophysical and photochemical processes: laws of photochemistry, quantum yield. Jablonski diagrams: Franck-Condon principle, Law of photochemical equivalence, quantum efficiency, low and high quantum efficiency. kinetics of photochemical reactions ($H_2 + Br_2 = HBr$, $2HI = H_2 + I_2$), energy transfer in photochemical reactions (photosensitization and quenching), fluorescence, phosphorescence, chemiluminescence, Discussion of Electronic spectra and photochemistry (Lambert-Beer law and its applications).

Text Books

1. Laideler K. J. and Meiser J. M. Physical Chemistry Third Edition (International)1999

2. Levine I. N., Physical Chemistry, Fourth Edition), McGraw-Hill (International), 1995.

Reference Books/Materials

1. McQuarrie D. A. and Simon J. D. Physical Chemistry- A Molecular Approach, University Science Books, 1998

2. Rohatgi-Mukherjee K. K. Fundamentals of Photochemistry, New age (revised second edition).

3. Banwell, C. N. & Cash, E. M. Fundamentals of Molecular Spectroscopy 4th Ed. Tata McGraw-Hill: New Delhi (2006)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination	
Examination Scheme:	

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Understand the interactions of electromagnetic radiation and matter and their applications.	PO1						
CO2	Analyse and interpret spectroscopic data to obtain information about the studied sample.	PO2, PSO2						
CO3	Explain rotational, vibrational, electronic and Raman spectra of molecules.	PO1						
CO4	Understand theory and practice of common photochemical and photophysical methods.	PO1						
CO5	Describe the various deactivation processes of molecular excited states.	PO4						
CO6	Explain the mechanisms and kinetics of common photochemical transformations.	PO1,PO4						

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	Learning of fundamen tal concepts and instrumen tation technique s	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemical s on the environm ent	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsib ilities	Systemat ic and coherent understa nding of theoretic al and practical concepts	iate the techniq ues for the qualitat	proble m solvin g appro	Apply principl es ofchem istry to address societal proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH3 03A	Molecular Spectrosc opy & Photoche mistry		2		3								2		

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2		3											2		
CO3	3														
CO4	3														
CO5				3											
CO6	2			3											
	1=lightly mapped 2= moderately mapped 3=strongly mapped														

BSCH353A	Molecular Spectroscopy & Photochemistry Practicals	L	Т	Р	C
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Physical Chemistry				
Co-requisites					

1. To be able to use colorimeter at different wavelength values.

- 2. To learn the numerical expression for Lambert-Beer's law.
- 3. To deduce concentration values using standard calibration curves.

4. To understand the ionisation of weak acids/ bases (indicators), and calculate their dissociation constant.

Course Outcomes

On completion of this course, the students will be able to

CO1. Use colorimeter to record absorbance values at different wavelengths.

CO2. Explain the theory and working principle of indicators.

CO3. Plot calibration curves for dyes and metal solutions.

CO4. Determine concentration of unknown solutions using absorbance values.

Catalog Description

This course imparts the basic concepts of colorimetry. data structures and algorithms. It enables students to understand the principle of indicators and to calculate their ionisation constant. The course introduces the stand calibration curve and how to use it to find out the concentration using absorbance values

Course Content	30 lecture
----------------	-------------------

List of Experiments

(i) Determination of indicator constant - colorimetry. (instructor may vary indicators available in the lab).

(ii). Verification of Beer's Law - Determination of concentration of solution by colorimetry. (Instructor may explain the principle of using colorimeter, its handling drawing standard calibration curve, and its application in finding unknown concentration of dyes, concentration of metal solutions (e.g.Ni, Cu using appropriate reagent) from standard calibration curve.

Text Books

1. Practicals in physical chemistry – a modern approach, P.S.Sindhu, Macmillan,

2. Experiments in Physical Chemistry, J.M.Wilson, R.J.Newcomb, A.R.Denaro, 2nd Edn., Elsevier.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of Experiment	Lab Record/Quizzes/	Attendance	End Term PracticalExamination
		Viva-Voce		
Weightage (%)	20	20	10	50

	Mapping between COs and POs							
	Course Outcomes (COs)							
CO1	CO1 Use colorimeter to record absorbance values at different wavelengths.							
CO2	Explain the theory and working principle of indicators.	PO1, PSO1						
CO3	Plot calibration curves for dyes and metal solutions.	PO1, PSO2						
CO4	Determine concentration of unknown solutions using absorbance values.	PO5						

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	Learning of fundamen tal concepts and instrumen tation technique s	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemical s on the environm ent	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsib ilities	Systemat ic and coherent understa nding of theoretic al and practical concepts	iate the techniq ues for the qualitat	proble m solvin g appro	principl es
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH3 53A	Molecular Spectrosc opy & Photoche mistry Praticals	3				2						2			
1=weakly	y mapped2=	= moderate	ely mappe	d3=strongly	mapped										
							-		rse Mappi	_					
CO	PO1	PO2	PO3	PO4	PO5 I	PO6 1	PO7 P	PO8 P	O9 PO	lo PO	11 PSC	1 PSO	2 PS	03	PSO4
CO1			3												
CO2	3										2				
CO3	3											2			
CO4					3										
				1=ligh	tly mapped	1	2= modera	ately mapp	bed	3=stroi	ngly mappe	ed			

DISCIPLINE SPECIFIC ELECTIVE-I

BSCH305A	Medicinal Chemistry	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

Course Objectives

Study of the topics included in this course will enable the students to

• familiarize with the concept of Prodrug, drug and their classification.

• build a basic knowledge of the theory of drug activity, bio-physical and chemical properties and structure activity relationship.

• knowledge about some of the representative drugs and their mode of action.

Course Outcomes:

After completion of the course, the learner can be able to:

CO1: Understand the basics of medicinal chemistry, biophysicalproperties

CO2: Gain knowledge of various biological activityparameters

CO3: Compare the efficacy of the drug based on structure activity relationship and drugmetabolism

CO4: Discuss and learn biophysical and chemical properties of enzymes, hormones, vitamins CO5: Apply the conceptsforrational drugdesign

Catalog Description

Medicinal chemistry is the discipline which involves intersection of synthetic organic chemistry, and pharmacology and various other biological specialties, where they are involved with design, chemical synthesis and development for market of pharmaceutical agents, or bioactive molecules (drugs).Medicines are required for treatment of different diseases and their action is dependent on their structure, stereochemistry, size and presence of different groups. This course provides an opportunity for understanding classification of drugs along with structure, mode of action and metabolism of some of the representative drugs. Biophysico-chemical properties of steroids, prostaglandins, enzyme, hormone and vitamins will also be discussed.

Course Content

UNIT I

Bio-physicochemical properties

Acidity/Basicity, Solubility, Ionization, Hydrophobic properties, Hydrophilic properties, Lipinski Rule, Drug-like properties, Understanding of the biological activity parameters such as Ki, Kd, LD50, EC50, IC50, CC50, ADMET properties

15 lecture

154

UNIT II Structural properties

Isosterism, Bioisosterism, Nonclassical isosteres, Understanding of the 3D-structure along with bond length, bond angle and dihydral angle, Concept of Configuration and Conformation with examples, Concept of stereochemistry in terms of biological response with examples, Stereoselectivereceptorsorenzymessuchasmuscarinicreceptor, Stereochemicallypuredrugandre cemates, Examples such as catecholamines, etc.

UNIT III

Drug target understanding.

Metabolism, Drug metabolism, Anti-metabolite, Enzyme inhibitor, Agonist, Antagonist, Examples.

Medicinal Chemistry of Therapeutic Agent

Structure, Chemistry, Mode of action and adverse effect of the representative therapeutic agents suchasAnti-

infectiveagent, Antimalarials, Antibacterial, Antiviral, Anticancer, CNS acting drugs,

AdrenergicAgents, CholinergicDrugs, Diuretics, Cardivascular, localanestheticagent, Analgesic Agents, Histamine and Antihistamineagents

UNIT IV

Steroids, Prostaglandins, Enzyme, Hormone and Vitamins

Biophysico-chemical properties, Steroid Hormone Receptors, Chemical Contraceptive agents, COX-2 inhibitors, Prostaglandins for Ophthalmic use, pharmaceutically important enzyme products such as Pancreatin, Trypsin, Insulin. Classification of vitamins with examples.

Concept of rational drug design

Structureactivityrelationship, Drug-receptorunderstanding,Molecularmodeling,Structurebased drug design.QSAR.

Applications of Artificial Intelligence in drug delivery and development.

Recommended books/References:

1. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical ...by Charles Owens Wilson, John H. Block, Ole Gisvold, John MarloweBeale

2. Foye's Principles of Medicinal Chemistry by David A. Williams, Thomas L. Lemke, William O. Foye (2008), Kluwer publication.

3. Remington: The Science and Practice of Pharmacy Vol 1, Ed. 19 by Joseph Price Remington, Alfonso R. Gennaro. (1995), MACKPublishing.

4. Burgers Medicinal Chemistry by Manfred E. Wolff, AlfredBurger

5. Burgers Medicinal Chemistry and Drug Discovery by Abraham D. J., Lewis F. L., Burger A., vol.5, 6thEdn., 2003, HobokenN.J.Wiley,

6. The Organic Chemistry of Drug Design and Drug Action by Silverman R. B., 2ndEdn., Academic Press.2012.

7. Exploring QSAR: Fundamental and applications in Chemistry and Biology by Hansch

15 lecture

15 lecture

15 lecture

C. and Leo, A American Chemical Society(1995)

8. Patrick, G. Medicinal Chemistry, Oxford.University Press(2000)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term		
	ssignm	nce	Exam	Assignment/ etc.	Exam		
	ent						
Weightage (%)	10	10	20	10	50		

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	The basics of medicinal chemistry, biophysical properties	PO1
CO2	Biological activityparameters	PO1&PO3
CO3	Drugmetabolism	PO3
CO4	Biophysical and chemical properties of enzymes, hormones, vitamins	PO1
CO5	Concept of rational drugdesign	PO3, PSO4

		Enhanc	Develo	Demonst	Learning	Orienta	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	of	tion	ng	anding	g	al	ty to	atic and	ciate	probl	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	aware	deal	coheren	the	em	ples
		Advanc	critical,	plinary	ntal	s	ty to	impact	ication	ness	with	t	techni	solvi	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on the		1	responsi	of	qualita	ach	addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	tive		s
		dge	thinkin		techniqu		as a	ment		су		cal and	and		societ
		about	g		es		member					practica	quanti		al
		chemist					of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					s	is		
Course Code	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Medi														
BSCH	cinal	3		3											2
305A	Chem	3		3											2
	istry														
1=weakly	/ mapped	2= moder	ately mapp	ped3=strong	gly mapped										
		T	I				8		urse Mapp	0			1		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	10 PC	D11 PS	O 1 PSC	D 2 PS	503	PSO4
CO1	3														
CO2	3		3												
CO3			3												
CO4	3														
CO5			3												2
				1=li	ghtly mapp	ed	2 = mode	erately map	ped	3=stro	ongly mapp	ped			

BSCH 355A	Medicinal Chemistry Practicals	L	Т	Р	С
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

In this course students will appreciate and comprehend the basic concepts regarding medicinal compounds, methods of synthesis of drugs, their importance for remediation and management of diseases.

Course Outcomes

After completion of the course, the learner can be able to

CO1: understand the basics of medicinal chemistry

CO2: learn the synthesis of drugs

CO3: learn the purification and separation techniques

CO4: evaluate the biophysical and chemical properties of drugs

Catalog Description

Understanding of Medicinal Chemistry is very essential from the point of view of designing these molecules for various therapeutic applications. It is imperative that structure plays a very significant role in mitigating diseases. Through this course students will have experiential learning regarding purification and separation techniques, synthesis of various drug molecules, and understanding of biophysical properties of these compounds.

Course Content

30 lecture

Practical wok suggested:

1. Purification Techniques of solvents by Fractional Distillation and Vacuum Distillation.

2. Thin Layer Chromatography Technique and Purification of commercially available drugs/Synthesized Compounds by ColumnChromatography.

3. Preparation of Acid/Basic Salts of Drugs and Evaluation of their Physicochemical Properties.(Benzilic Acid & Sodium Benzoate)

4. Synthesis & Purification of following Compoundsusing

i). precipitation or Recrystallization. ii) Synthesis of Benzimidazole.

(iii)Synthesis of Anthranilic Acid.(iv)Synthesis of Sulphanilamide.

(v)Synthesis of benzoic acid from benzyl alcohol.(vi)Synthesis of 1,4 – dihydropyridine.

5. Computational modeling of drug design/use of softwares may be demonstrated tostudents.

Suggested books/references:

1. Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J. D.Barnes,

M. J. K Thomas, 6th Edition, Pearson's Education Ltd.

2. Advanced Practical Medicinal Chemistry, Ashutosh Kar, New Age International Ltd. (2004). 3.Vogel"s Textbook of Practical Organic Chemistry, B. S. Furniss, A. J. Hannaford , P.W.G.

Smith, A. R Tatchell, 5th edition (2008), Pearson's Education Ltd

(The list of experiments and books are purly suggestive; University/institute may incorporate further changes in number of experiments and books/references (updated version from time to time) based on course design and available infrastructure facilities).

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of	Lab	Attendance	End Term
	Experiment	Record/Quizzes		PracticalExamin
		/ Viva-Voce		ation
Weightage	20	20	10	50
(%)				

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program
CO1	understand the basics of medicinal chemistry	PO1, PSO4
CO2	learn the synthesis of drugs	PO5, PSO1
CO3	learn the purification and separation techniques	PO1, PO5, PSO2
CO4	evaluate the biophysical and chemical properties of drugs	PO1

		Enhanc	Develo	Demonst	Learning	Orienta	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	of	tion	ng	anding	g	al	ty to	atic and		probl	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	aware	deal	coheren		em	ples
		Advanc	critical,	plinary	ntal	s	ty to	impact	ication	ness	with	t	techni	solvi	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and	approach	and	h and	indepen	chemica	SKIIIS	digita	onal	anding	for the	-	to
		ic	innovat		instrume	develo	dently	ls on the			responsi	of	qualita	11	addres
		knowle	ive		ntation	pment	as well	environ		litera	bilities	theoreti	-		s
		dge	thinkin		techniqu	pinent	as a	ment		cy	Unities	cal and	and		societ
		about	g		es		member	ment		Cy		practica			al
		chemist	Б		05		of the						tative		proble
		ry					diverse					concept			ms
		1 y					team					s	is		1115
							team					3	15		
Course	Cours	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code	e Title														
BSCH	Medi														
355A	cinal														
	Chem	3				2						2	2		2
	istry	3				2						2	2		2
	Practi														
	cals														
1=weakly	[,] mapped	2= modera	ately mapp	ed3=strong	ly mapped										
					Pı	rogramm	e and Cou	rse Mapp	ing						
СО	PO1	PO2	2 PO	3 PO4	PO5	POe	6 PO	7 PO8	8 PO9	PO 10) PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														3
CO2					3							2			
CO3	3				3								2		
CO4	3														
			1=l:	ghtly mapp	ed	2 = moder	rately map	ped	3=strong	ly mapp	ed				

BSCH307A	Heterocyclic Chemistry	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of organic chemistry				
Co-requisites					

1. To enable the students to understand Heterocyclic compounds and their reactions.

2. To enable the student to differentiate between two, three, four and five membered heterocyclic compounds with respect to the properties.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the methods of preparation of variety of heterocyclic compounds and evaluate the ractivity of compounds based on their structure

CO2. Understand the chemistry of three membered heterocyclic compounds with one or two hetero atoms

CO3. Demonstrate the chemistry of four membered heterocyclic compounds

CO4. Gain knowledge and understanding about five membered condensed heterocyclic compounds

CO5. Predict the carbon skeleton of amines and heterocyclic compounds via use of Hoffmann's exhaustive methylation and Emde's modification methods

CO6. Evaluate the applications of heterocycles in medicines

Catalog Description

This course contains variety of two, three, four, five membered and condensed heterocyclic compounds. The syllabus also deals with important properties of such compounds.

Course Content

UNIT I

HeterocyclicChemistry

15 Lectures

15 Lectures

15 Lectures

Three-membered rings with one heteroatom: Chemistry of oxiranes, aziridines and episulphides - synthetic approaches and reactivities.

UNIT II

Three-membered heterocycles with two heteroatoms: oxaziranes, diaziridines and diazirines- synthetic approaches and reactivities.

UNIT III

Four-membered heterocycles: oxitanes, azatidanes and thietanes - synthetic approaches and reactivities. natural products:synthesis of Peniciline andcephalosporine.

UNIT IV

15 Lectures

Five-membered aromatic heterocycles:

1. With one heteroatom: furans, pyrroles and thiophenes - general synthetic approaches, properties and reactivities.

2. With two heteroatoms: oxazoles, isoxazoles, imidazoles, thiazoles, pyrazoles and isothiazoles - general synthetic approaches and reactivities.

3. With three and four heteroatoms: triazoles and tetrazoles - synthetic approaches, properties and reactivity.

Condensed five-memberedHeterocycles:

Benzofuran, indoles and benzothiazoles - general synthetic approaches, with greater emphasis on the chemistry ofIndoles

Recommended Books/references:

1. Heterocyclic Chemistry, J.A. Joule, K. Mills, Wiley, 2010.

2. The Essence of heterocyclic Chemistry, A. R. Parikh, H. Parikh, R. Khunt, New Age Int. Publication,

3. Principles of Modern Heterocyclic Chemistry, L. A. Paquette, W. A. Benjamin, New York, 1968.

4. Heterocyclic Chemistry, J.A. Joule and G. F. Smith, van Nostrand, London, 1978.

5. Comprehensive Heterocyclic Chemistry. The structure, reactions, synthesis and use of Heterocyclic compounds, (Ed. A.R. Katritzky and C. W. Rees),. Vol 1-8, Pergamon Press,1984.

6. Handbook of Heterocyclic Chemistry, A. R. Katritzky, Pergamon Press, 1985.

7. Van der plas, H. C. Ring transformations of Heterocycles, Vols 1 and 2, Academic Press, 1974.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Enhance the skill of learning about Preparation and variety of heterocyclic compounds reactions	PO1, PO7
CO2	Understand two membered heterocyclic compounds.	PO1
CO3	Understand three and four membered heterocyclic compounds.	PO1
CO4	Understand five membered condensed heterocyclic compounds.	PO1
CO5	Predict the carbon skeleton of amines and heterocyclic compounds via use of Hoffmann's exhaustive methylation and Emde's modification methods.	PO1
CO6	Understand the applications of these compounds including their medicinal applications through their reaction chemistry.	PO3, PSO4

				Demonst	Learning		Acquiri		Fosterin		Capabili	System	Appre	Learn	Apply
		Enhanc	Develo	rate	of	Orient	ng	Underst	g	Ethic	ty to	atic and	ciate	probl	princi
		ement	pment	interdisci	fundame	ation	capabili	anding	commun	al	deal	coheren	the	em	ples
		in	of	plinary	ntal	toward	ty to	of	ication	awar	with	t	techni	solvi	ofche
		Advanc	critical,	approach	concepts	s	work	impact	skills	eness	professi	underst	ques	ng	mistry
		ed	logical		and	researc	indepen	of		and	onal	anding	for the	appro	to
		Scientif	and		instrume	h and	dently	chemica		digita	responsi	of	qualita	ach	addres
		ic	innovat		ntation	develo	as well	ls on the		1	bilities	theoreti	tive		S
		knowle	ive		techniqu	pment	as a	environ		litera		cal and	and		societ
		dge	thinkin		es		membe	ment		cy		practica	quanti		al
		about	g				r of the					1	tative		proble
		chemist					diverse					concept	analys		ms
		ry					team					S	is		
Cours e Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH	Hetero														1
307A	cyclic Chemi	3		1				1							
	stry														

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

					Pro	ogramme a	and Cours	e Mapping	g						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3						2								
CO2	3														
CO3	3														
CO4	3														
CO5	3														
CO6			3												2
	1=lightly mapped 2= moderately mapped 3=strongly mapped														

BSCH357A	Heterocyclic Chemistry Practicals	L	Т	Р	С
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of organic compounds				
Co-requisites					

- 1. To enable the student for hands on learning by experiments.
- 2. To generate confidence among students to perform reactions or analysis.

Course Outcomes

On completion of this course, the students will be able to

CO1. Learn Qualitative analysis of elements of unknown organic compounds.

CO2. Learn Qualitative analysis of simple organic compounds by using column chromatography/TLC.

CO3. Application of Spectroscopy for identification of simple organic compounds.

CO4. Understand the preparation of Dyes.

CO5. Learn about the environment safety at the time of performing experiment.

Catalog Description

In this course Identification of hetero atoms, Identification/separation of simple organic compounds containing hetero atoms using column chromatorgapy/TLC, Spectroscopic identification of simple organic compounds and preparation of Indigo dye, are available.

Course Content

30 lecture

List of suggested laboratory experiments

1. Identification of hetero atoms (S, N, X) in given organic compounds inlab.

2. Identification/separation of simple organic compounds containing hetero atoms using column chromatorgapy/TLC) inlab.

3. Spectroscopic identification of simple organic compounds (spectra may be provided to the students and teachers may help the students to identify the compounds using spectra). Melting point/boiling point of the compounds may be checked for itspurity.

4. Teacher may guide the students for preparation of : Indigo (using aldol condensation reaction of 2-nitrobenzaldehyde with acetone in basiccondition);

(Depending upon laboratory facilities, more preparation of heterocyclic group of compoundsmay be incorporated byteacher).

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	CO1 Learn Qualitative analysis of elements of unknown organic compounds.							
CO2	CO2 Learn Qualitative analysis of simple organic compounds by using column chromatorgapy/TLC.							
CO3	Application of Spectroscopy for identification of simple organic compounds.	PO4, PO5						
CO4	Understand the preparation of Dyes.	PO1						
CO5	Learn about the environment safety at the time of performing experiment.	PO7						

				Demonstr	Learning				Fostering		Capabilit	Sys	stema	Apprec	Learn	Apply
		Enhanc	Develop	ate	of	Orienta	Acquirin	Understa	Ũ	Ethica	y to deal	-		iate the	proble	princip
		ement	ment of	interdisci	fundame	tion	g	nding of	cation	1	with		erent	techniq	m	les
		in	critical,	plinary	ntal	towards	capabilit	impact	skills	aware	professio	und	lersta	ues for	solvin	ofchem
		Advanc	logical	approach	concepts	researc	y to	of		ness	nal	ndi	ng of	the	g	istry to
		ed	and		and	h and	work	chemical		and	responsi	theo	oretic	qualita	appro	address
		Scientifi	innovati		instrume	develop	indepen	s on the		digital	bilities	al	and	tive	ach	societa
		c	ve		ntation	ment	dently	environ		literac		pra	ctical	and		1
		knowle	thinking		technique		as well	ment		У		con	cepts	quantit		proble
		dge			S		as a							ative		ms
		about					member							analysi		
		chemist					of the							S		
		ry					diverse									
							team									
Course	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10					
Code	Title	POI	PO2	P03	P04	P03	POO	PO/	P08	P09	P010	PSC	D1	PSO2	PSO3	PSO4
	Heteroc															
BSCH	yclic													3		
357A	Chemis	3			3	2		2								
	try	5			5	2		2								
	Practic															
	als															
1=weakly	/ mapped2	2= modera	tely mapp	ed3=strong	ly mapped											
		1		· · · ·			-		urse Mapp	-			1			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	10 PC	D11 PS	501	PSO	2 PS	03	PSO4
CO1	3												3			
CO2				3									3			
CO3				3	3											

2= moderately mapped

3=strongly mapped

3

1=lightly mapped

CO4

CO5

3

BSCH309A	Advanced Material Chemistry	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Physical chemistry or an equivalent course is r	ecoi	nme	ende	ed
Co-requisites					

DISCIPLINE SPECIFIC ELECTIVE-II

Course Objectives

1. To understand the crystal structure of solids, fundamental of lattices, unit cell, atomic coordinates, Bravais lattices, crystal direction and planes, types of close packing, packing efficiency, radius ratios; few important crystal structures.

2. To acquire the knowledge of synthesis of Inorganic solids in solid state, solution phase and vapor phase by the processes as precipitation, hydrothermal, sol-gel, surfactant based synthesis.

3. Able to synthesize nanowires and nanotubes by CVD and MOCVD method along with understanding of Magnetic properties of nanoparticles.

4. To develop biodegradable polymers, conducting polymers, fibers and rubber.

Course Outcomes

On completion of this course, the students will be able to

CO1. Able to interpret the basic materials chemistry that underpins current and emerging technologies as well as some of the novel classes of materials being developed for future applications.

CO2. To acquire knowledge of instrumental characterization methods and their interpretation. CO3. Gain knowledge on wide variety of advanced materials like nano and smart materials which have excellent physical and chemical properties.

CO4. Identify different types of polymers, composites and their applications in various fields.

CO5. Get trained in conducting scientific experiments, recording and analyzing experimental data.

CO6. Solve problems and carry out scientific investigations.

Catalog Description

Materials chemistry is the study of the synthesis, structure, properties, and application of solid materials.Our technology-driven world is fueled by advances in materials chemistry with examples of applicationin areas such as microelectronics, polymers, and energy technology. This course will explain theapplication of materials chemistry through the materials properties and characterization, detailing how the crystalline and molecular structure of materials can be related to electronic, optical, thermal, and mechanical properties.

Course Content

UNIT I

Crystal structure of solids

Fundamentaloflattices, unitcell, atomiccoordinates, Bravaislattices, crystal direction and planes, types of close packing, packing efficiency, radius ratios; few important crystal structures. Synthesis of Inorganic solids; solid state, solution phase and vapor phase synthesis; precipitation, hydrothermal, sol-gel, surfactant based synthesis. Growth of single crystals. Crystal structure determination by X-ray diffraction, d-spacing formula, symmetrically absent reflections, Multiplicities, Scattering of X-rays by an atomanda crystal. Single crystal and powder diffraction. Electron and neutron diffraction. Concept of reciprocal lattice. Electron microscopy techniques.

UNIT II

Nanomaterial fundamentals

Synthesis: Bottom-up vs. Top-down Methods. Solution phase synthetic methods. Role of surfactant in shape and size control of nanomaterials.Synthesis of nanowires and nanotubes by CVD and MOCVD method.

UNIT III

Nanomaterials Characterization: XRD of nanomaterials, Electron microscopy (SEM, TEM, HRTEM and EDX) of nanomaterials, Scanning probe microscopy.

Nanomaterial properties and applications: Magnetic properties of nanoparticles; superparamagnetism, ferromagnetism in antiferromagnetic nanoparticles and single domain to multidomain transition. magnetic nanoparticles as MRI contrast agents.

UNIT IV

Frontier areas of polymer science and technology

Conducting polymers: basic principles of conducting polymers, delocalized electronic states of conjugated polymers, polyanilines, polyacetylenes, polythiophene, applications of conducting polymers.

Biodegradable polymers: Definition classification of natural biodegradable polymers, cellulose, cellulose acetate, cellophane, soy protein, corn, zein protein, wheat gluten protein, synthetic biodegradable polymers, polyhydroxy alkanoates, polycarpolactone, poly(vinyl alcohol), polyacetic acid, application of biodegradable and biomedical polymers, contact lens, dental polymers, artificial heart, kidney, skin, and blood cells.

Fibers: natural fibers, cotton, wool, silk, rayon, artificial fibers, polyamides, acrylic acid, PVC, PVA.

Rubber: Compounding and elastomeric properties, vulcanization, reinforcement.

15 Lecture

15 Lecture

15 Lecture

15 Lecture

Recommended books/References:

1. ZhenGuoandLiTan, *FundamentalsandApplicationsofNanomaterials*.2009, ArtechHous e, LondonPublication.

2. Physical methods for chemistry: R. S. Drago, 1992, Saunders collegepublication.

3. Polymerscience, V.R.Gowariker, N.V.Viswanathan, J.Sreedhar, NewAgeInternational (P) Ltd., 2015.

4. P. J. Flory, Principle of polymer chemistry, Cornell UniversityPress.

5. Polymer Science and technology, Plastics, Rubber and composites, P. Ghosh, Tata McGraw Hill.

6. V. Gowriker, N. V. Viswanathan, J. Sreedhar, Polymer Science, New Age Int.Publication, 2019.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped
C01	Able to interpret the basic materials chemistry that underpins current and emerging technologies as well as some of the novel classes of materials being developed for future applications.	PO1
CO2	To acquire knowledge of instrumental characterization methods and their interpretation.	PO4, PSO2
CO3	Gain knowledge on wide variety of advanced materials like nano and smart materials which have excellent physical and chemical properties.	PO1
CO4	Identify different types of polymers, composites, and their applications in various fields.	PO1
CO5	Get trained in conducting scientific experiments, recording, and analyzing experimental data.	PO4, PSO2
CO6	Solve problems and carry out scientific investigations.	PO1, PO2

		Enhance ment in Advanc ed Scientifi c knowled	Develop ment of critical, logical and innovati ve	Demonstr ate interdisci plinary approach	Learning of fundame ntal concepts and instrume	Orientat ion towards researc h and develop ment	Acquirin g capabilit y to work indepen dently as	Understa nding of impact of chemical s on the environ	Fostering communi cation skills	Ethica l aware ness and digital literac	Capabilit y to deal with professio nal responsib ilities	Systema tic and coheren understa nding o theoreti al and	iate t tech a ues f the c qua	prec the nniq for llitat and	Learn proble m solvin g appro ach	Apply principl es of che mistry to address
		ge about chemistr y	thinking		ntation technique s		well as a member of the diverse team	ment		у		practica concept	l qua s ativ	ntit		societal proble ms
Course Code	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO	52	PSO3	PSO4
BSCH 309A	Adva nced Mater ial Chem istry	3	1		3									1		
1=weakly	/ mapped	d2= moder	ately map	ped3=strong	gly mapped											
							0		urse Mapp	8						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	10 P	011 PS	01 PS	SO 2	PS	03	PSO4
CO1	3			-									2			
CO2				3									3			
CO3	3															
CO4 CO5	3			3												
CO5 CO6	3	3		3												
		3		1_1	ghtly mapp	ved	2- mod	erately map	ned	3-0++	ongly map	ned				
				1-1	ignuy mapp	eu	∠– mode		ppeu	3–8tř	ongry map	peu				

SEMESTER V		
BSCH359A	Advanced Material Chemistry Practicals	LTPC
Version 1.0		0042
Total Contact Hours	30	
Pre-requisites/Exposure	Basics of analytical chemistry	
Co-requisites	-	

1. To develop an understanding of the range and uses of analytical methods in chemistry.

2. To establish an appreciation of the role of chemistry in quantitative and qualitative analysis

3. To develop an understanding of the broad role of the chemist in measurement and problem solving for analytical tasks.

4. To provide experience in some scientific methods employed in analytical chemistry.

Course Outcomes

On completion of this course, the students will be able to

CO1. Experience of research design and management.

CO2. Handle advanced instrumentation or techniques.

CO3. Able to produce of scientific reports.

CO 4. Assess the appropriate methods of data collection/analysis to address the research question.

CO5. Understand the basic principles associated with spectrophotometry and discuss how these are applied to the various specific applications.

CO6. Discuss the practical considerations appropriate for the application of these methods to typical chemical analyses (e.g. sensitivity, detection limits, linear response ranges, interferences, etc.)

Catalog Description

This course first offers an introduction to nanomaterials and their preparation method by bottom-up and top-down method. Sampling, Specific analytical techniques or concepts covered are: complexometric titration, spectrophotometric analysis and morphology analysis of particles. These topics will be covered from the point of view of theory, the associated analytical instrumentation and relevant computational methods.

Course Content

30 lecture

List of suggested Laboratory Experiment

(The lists of experiments are suggestive. However, faculties/academic bodies may add more experiments/references or incorporate suitable revisions based on infrastructure facilities available).

1. Preparation of gold and silvernano-particles.

2. Interfacial polymerization, preparation of polyester from isophthaloylchloride(IPC) and phenolphthalein

- 3. Determination of composition of dolomite (by complexometric titration).
- 4. Analysis of XRD pattern of few selected crystals like NaNO3, CaCl2, etc.; Indexing of

a given powder diffraction pattern of a cubic crystallinesystem.

- 5. Interpretation of FTIR, NMR and UV-Vis data of givenmaterial.
- 6. Estimation of particle size from the BET, SEMtechniques.

Recommended books/Reference Book:

1.Fahlman, B.D. Materials Chemistry, Springer, 2004.

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of	Lab	Attendance	End Term
	Experiment	Record/Quizzes		PracticalExamin
		/ Viva-Voce		ation
Weightage (%)	20	20	10	50

Mapping between COs and POs Mapped **Course Outcomes (COs)** Program Outcomes Experience of research design and management. **CO1 PO5** Handle advanced instrumentation or techniques. **CO2 PO4, PSO1** Able to produce of scientific reports. **CO3 PO1, PO2** Assess the appropriate methods of data collection/analysis **CO4 PO2** to address the research question. Get trained in conducting scientific experiments, recording, PO1, PO5, **CO5** and analyzing experimental data. **PSO1** Solve problems and carry out scientific investigations. **CO6** PO2, PSO2

		Enhance	Develop	Demonstr	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ment in	ment of	ate	of	ion	g	nding of	communi	1	y to deal	tic and	iate the	proble	principl
		Advanc	critical,	interdisci	fundame	towards	capabilit	impact	cation	aware	with	coherent	techniq	m	es
		ed	logical	plinary	ntal	researc	y to	of	skills	ness	professio	understa	ues for	solvin	of che
		Scientifi	and	approach	concepts	h and	work	chemical		and	nal	nding of	the	g	mistry
		c	innovati	upprouvu	and	develop	indepen	s on the		digital	responsib	theoretic	qualitat		to
		knowled	ve		instrume	ment	dently as	environ		literac	ilities	al and	ive and	ach	address
		ge about	thinking		ntation	mont	well as a	ment		y	mues	practical	quantit	uon	societal
		chemistr			technique		member			5		concepts	ative		proble
		y			s		of the					concepts	analysi		ms
		5			5		diverse						s		
							team						5		
							touin								
Course	Cours	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code	e Title	POI	PO2	POS	P04	PO3	PO0	P07	PUð	PO9	P010	P301	P302	P305	P304
	Adva														
	nced														
	Mater														
BSCH	ial	2	3		1	2						1	1		
359A	Chem	2	3		1	2						1	1		
	istry														
	Practi														
	cal														
1_rrvoolrlr		d. O mand		nned. 3-str		ad									1 1

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

					Pr	ogramme a	and Course	Mapping							
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1					3										
CO2				3								3			
CO3	3	3													
CO4		3													
CO5	3				3										
CO6		3											3		
		·	1=lig	ghtly mappe	ed 2	2= moderate	ely mapped		3=strongly	mapped		·			

BSCH321A	Organometallic and Bioinorganic	L	Т	Р	С
	Chemistry				
Version 2.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of transition elements and metal ions pr	eser	nt		
	biological system				
Co-requisites					

- 1. To understand variable oxidation state of some transition elements.
- 2. To learn about the basics of organometallic compounds.
- 3. To describe the role of metal ions in biological system
- 4. To learn synthesis of organometallic compounds like ferrocene.

Course Outcomes

On completion of this course, the students will be able to

CO1. Learn about variable oxidation state of transition elements like Cr, Fe, Co and Ni.

CO2. Learn to develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding.

CO3. Get information about various common compounds of transitions elements which are used in laboratory on daily basis.

CO4. To predict and understand the function of Mg2+ and Ca2+ ions in daily basis life.

CO5. Familiar with synergic effects that have wide application in chemistry especially metathesis, catalysis and infra-red analysis.

CO6. Able to describe the role and chemistry of metal ions in human life.

Catalog Description

This course imparts basic knowledge of organometallic compounds including their structure, preparation and properties. This course introduces different types of mononuclear and polynuclear carbonyl of 3d metals. The course will provide a basic understanding of the metal ions in biological system like role of Ca^{2+} in blood clotting, Mg^{2+} in energy production.

Course Content

UNIT I

15 Lectures

Chemistry of 3d metals: Oxidation states displayed by Cr, Fe, Co, Ni and Co. A study of the following compounds (including preparation and important properties); Peroxo compounds ofCr, K₂Cr₂O7, KMnO₄, K₄[Fe(CN)₆], sodium nitroprusside, [Co(NH₃)₆]Cl₃,Na₃[Co(NO₂)₆].

UNIT II

15 Lectures

Organometallic Compounds:Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. Metal carbonyls: 18 electron rule, electron count of mononuclear, polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series.Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT.pi-acceptor behaviour of CO (MO diagram of CO to be discussed), synergic effect and use of IR data to explain extent of back bondingZeise's salt: Preparation and structure, evidences of synergic effect and comparison of synergic effect with that in carbonyls.

UNIT III

15 Lectures

Metal Alkyls:Important structural features of methyl lithium (tetramer) and trialkyl aluminium (dimer), concept of multicentre bonding in these compounds. Role of triethylaluminium in polymerisation of ethene (Ziegler – Natta Catalyst). Species present in ether solution of Grignard reagent and their structures, Schlenk equilibrium.Ferrocene: Preparation and reactions (acetylation, alkylation, metallation, Mannich Condensation). Structure and aromaticity.Comparison of aromaticity and reactivity with that of benzene.Definition and Classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals.p-acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO diagram of CO can be referred to for synergic effect to IR frequencies). Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.

UNIT IV

Bioinorganic chemistry:

15 Lectures

A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to Na⁺, K⁺ and Mg²⁺ ions: Na/K pump; Role of Mg²⁺ ions in energy production and chlorophyll. Role of Ca²⁺ in blood clotting, stabilization of protein structures and structural role (bones).

Recommended books/reference books

1. Lippard, S.J. & Berg, J.M. *Principles of Bioinorganic Chemistry* Panima Publishing Company 1994.

2. Cotton, F.A. & Wilkinson, G, Advanced Inorganic Chemistry Wiley-VCH, 1999

3. Basolo, F, and Pearson, R.C. *Mechanisms of Inorganic Chemistry*, John Wiley & Sons, NY, 1967.

4. Greenwood, N.N. & Earnshaw A. *Chemistry of the Elements*, Butterworth-Heinemann, 1997

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

	Comp	onents		Quiz		Atte			id To				entat			End T		
Relationship between the Course Outcomes (COs) and Program Outcomes (POs) Mapping between COs and Pos Course Outcomes (COs) Mapped Program Outcomes Col1 Learn about variable oxidation state of transition elements like Cr, Fe, Co and Ni. PO1 CO2 Cermed evelop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding. PO1 CO3 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. PO1 CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ PO1, PSO2 Able to describe role and chemistry of metal ions in human life. PO1, PSO2 Output provide the public prov			ent								ЕXа	.111						
Mapping between COs and Pos Mapping between COs and Pos Mapped Program Outcomes Course Outcomes (COs) Mapped Program Outcomes CO1 Learn about variable oxidation state of transition elements like Cr, Fe, Co and Ni. PO1 CO2 Learn develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding. PO1 CO3 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. PO1 CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO3 CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO3 CO6 Able to describe role and chemistry of metal ions in human life. PO3 Vijunajo power billing input sub put in the provide bill bill bill bill bill bill bill bil	Weighta	ige (%))	10		1	0		20				10			50)	
Mapped Program Outcomes Course Outcomes (COs) Mapped Program Outcomes CO1 Learn about variable oxidation state of transition elements like Cr, Fe, Co and Ni. PO1 CO2 Learn develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding. PO1 CO3 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. PO1 CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO3 CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red infe. PO1, PSO2 CO6 Able to describe role and chemistry of metal ions in human life. Pup the signification spectra base of the patient spectra infinition of the signification in chemistry especially mutathesis, catalysis and infra-red infector of the signification in the signification of the signification of the signification in the signification of the signification in the signification of the signification of the signification in the signification o	Relations	hip bet	twee	en th	e Co	urse	Outo	come	s (CC	Ds) a	nd P	rogra	am O	utcon	nes (P	Os)		
Course Outcomes (CO3) Program Outcomes CO1 Learn about variable oxidation state of transition elements like Cr, Fe, Co and Ni. PO1 CO2 Learn develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding. PO1 CO3 Get information about various common compounds of transitions idements which are used in laboratory on daily basis. PO1 CO4 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO6 Able to describ true undoposition on life. PO1 PO3 CO6 Outcomes PO1, PSO2 PO1, PSO2 CO6 Able to describ true undoposition on life. PO1, PSO2 PO1, PSO2 CO6 PO1 PO3, PSO4 PO1, PSO2 PO1, PSO2 CO7 PO1 PO3, PSO4 PO1, PSO2 PO1, PSO2 CO8 PO1 PO3, PSO4 PO1, PSO2 PO1, PSO2 CO1 PO1, PSO2 PO1, PSO2 PO1, PSO2 PO1, PSO2 PO1, PSO2]	Map	ping	betw	een	COs	and	Pos						
CO1 Learn about variable oxidation state of transition elements like Cr, Fe, Co and N. POI CO2 Learn about variable oxidation state of transition elements rule and back pi bonding. Vertice and service and back pi bonding. POI CO3 Co3 Co3 Co3 Co3 POI CO3 Co3 Co3 Co3 Co3 POI CO3 Co3 Co3 Co3 Co3 POI POI CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. POI POI POI CO4 Pamiliar with synergic effect that have wide application in ife. POI POI POI CO4 Able to describe role and chemistry of metal ions in human life. Able to describe role and chemistry of point in any site in the synergic application in life. Route and synergic application in life. Route any site in the synergic application in life. Route and synergic application in life. Route any site in the synergic application in life. Route any site in the synergic application in life. Route any site in the synergic application in life. Route any site in the synergic application in life. Route any site in the synergic application in life. Route any site in the synergic application in life								0		(
COI Learn about variable oxidation state of transition elements like Cr, Fe, Co and Ni. POI CO2 Learn develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding. POI CO3 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. POI CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO3 CO5 Familiar with synergic effect that have wide application in themistry especially metathesis, catalysis and infra-red analysis. PO3 CO6 Able to describe role and chemistry of metal ions in human life. PO3 V Upper provide the standing of the stan						(Cours	se Oi	itcon	nes (COs)					-		
CO1 like Cr, Fe, Co and Ni. POI CO2 Learn develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pibonding. POI CO2 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. POI CO4 Get information about various common compounds of transitions in daily basis life. POI CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. POI, PSO2 CO6 Able to describe role and chemistry of metal ions in daily basis life. POI, provide analysis. CO6 Able to describe role and chemistry of metal ions in daily basis life. POI, provide analysis. CO6 Able to describe role and chemistry of metal ions in daily basis life. POI, provide analysis. CO6 Able to describe role and chemistry of metal ions in daily basis life. POI, provide analysis. CO6 Able to describe role and chemistry of provide analysis. POI, provide analysis. CO6 Able to describe role and chemistry of provide analysis. POI analysis and provide analysis. Course Course 101 P P P P P P P			Le	arn a	hout	varia	ble c	xida	tions	state	of tra	nsitio	on ele	ments				
Learn develop the ability to understand basics of organometallic compounds, concepts of hepaticity, EAN rule and back pi bonding. PO1 CO3 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. PO1 CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO1, PSO2 PO1, PSO2 CO4 Pont determine the size of the patient o	CO	1								, and v	51 114			mento	,	PO1		
rule and back pi bonding. Get information about various common compounds of transitions elements which are used in laboratory on daily basis. CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ pO3 PO1 CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO1, PS02 CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PS02 CO6 Able to decompting of fundamental concepts and redigital lift. PO1 CO6 Post and redigital infravel application in the precision of the prec					-				ty t	o ui	nders	tand	basi	cs of	f			
Get information about various common compounds of transitions elements which are used in laboratory on daily basis. PO1 CO4 Get information about various common compounds of transitions elements which are used in laboratory on daily basis. PO3 CO4 To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO1, PSO2 CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO6 Able to describe role and chemistry of metal ions in human life. PO3 Come PO1, PSO2 PO3 PO1, PSO2 Addentities catalysis and infra-red analysis. PO1, PSO2 Cool PO1, PSO2 PO3 PO1, PSO2 PO1, PSO2 PO1, PSO2 PO1, PSO2	CO	2	org	1 V									ſ	PO1				
CO3 transitions elements which are used in laboratory on daily basis. PO1 PO1 To predict and understand the function of Mg ²⁺ and Ca ²⁺ form of the minimum parameter in the transition. PO1 CO3 Familiar with synergic effect that have application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO5 Able to describe role and chemistry of metations in high sector in the function of matrix especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO5 Able to describe role and chemistry of metations in high sector in the function of matrix especially in the properties of the sector in the function of matrix especial properties of the properties of the sector in the properties of the propertis of the propertis of the properties of the propertis of the pro				rule and back pi bonding.														
basis.CO4To predict and understand the function of Mg^{2+} and Ca^{2+} PO3CO4Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis.PO1, PSO2CO5Able to describe role and chemistry of metal ions in human life.PO3PO3PO1, PSO2Able to describe role and chemistry of metal ions in human life.PO3, PSO2PO3PO3PO1, PSO2PO1, PSO2<		-											-					
To predict and understand the function of Mg ²⁺ and Ca ²⁺ ions in daily basis life. PO3 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO5 Able to describe role and chemistry of metal ions in hum ife. PO3 CO6 Able to describe role and chemistry of metal ions in hum ife. PO3 PO1, PSO2 PO1, PSO2 PO1, PSO2 PO1, PSO2 PO1, PSO2 Able to describe role and chemistry of metal ions in hum ife. PO1, PSO2	CO	3			ons e	leme	nts w	hich	are u	ised 1	n lat	orato	ory on	daily	7	PO1		
PO3 ions in daily basis life. CO5 Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 CO5 Able to describe role and chemistry of metal ions in human life. PO3 CO6 Able to describe role and chemistry of metal ions in human life. PO3 PO1, PSO2 PO1, P					lict a	nd u	ndere	tand	the f	incti	01 0	f Ma	$\frac{2+}{2+}$ and	$\frac{1}{1} C a^{2+}$	+			
Familiar with synergic effect that have wide application in chemistry especially metathesis, catalysis and infra-red analysis. PO1, PSO2 COS Able to describe role and chemistry of the metathesis, catalysis and infra-red analysis. PO1, PSO2 COM Able to describe role and chemistry of the metathesis, catalysis and infra-red analysis. PO1, PSO2 Able to describe role and chemistry of the metathesis, catalysis and infra-red life. PO3 PO1, PSO2 Securities describe role and chemistry of the metathesis, catalysis and infra-red life. PO3 Course infe. PO1, PSO2 PO1, PSO2 <td>CO</td> <td>4</td> <td></td> <td colspan="9"></td> <td></td> <td colspan="3">PO3</td>	CO	4												PO3				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-				ct tha	at hav	ve wi	de ap	plicat	ion in	L			
CO06 Able to describe role and chemistry of metal ions in human life. PO3 CO01 Able to describe role and chemistry of metal ions in human life. PO3 PO3 Image: Second seco	CO	5	che	emist	ry e	speci	ally	meta	thesi	s, ca	talys	is an	d inf	ra-red	PC	PO1, PSO2		
$\begin{array}{ c c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $																		
Result Course Code	CO	6			desc	ribe 1	ole a	nd cł	nemis	stry o	f met	al ion	ns in h	numan	I I	PO3		
BSCH Image: Signature Image: Sign			life	e.						u								
BSCH Image: Signature Image: Sign				с		ach	pu			uls o		y		ing			lres	
BSCH Image: Signature Image: Sign				ntifi	and	pro	ts a			nica		erac	nal	and			adc	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				cier	_		Icep	anc		cher	ills			erst	r the	ach	y to	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				s pa	logi	nar	con	arch	/ork	of c	ı ski	gita	tofe	pun	s fo	prc	iistr	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ance	al,	ildi	ntal	ese	to w	act	tion	l dig	h pi	ent	due	g af	nem	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 dv	ritic	disc	mei	ds r	ity 1	imp	nica	anc	wit	her	hni	lvin	of cl	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				in A	of c	nter	nda	war	abil	; of	ını	less	leal	d co	tec	l sol	les (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ent	ent	ite i	f fu	1 to	cap	ding	moc	arer	to 6	and	the	len	[cip]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				em	bm(stra	1g 0	tior	ing	tanc	ng c	aw	lity 	hatic	iate	orob	prin	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							urnir	enta	quir	ders	teri	ical	abi	item.	prec	urn f	ply]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							I			Un	Fos		Caţ	Sys	Apl	Le	Apl	
Code Title 0	Course	se Course											PO	PS	PS	PS	PS	
BSCH Organo metallic 3 2 1 1																		
BSCH metallic 3 2 1		Orace		1	2	5	4	5	0	/	0	7						
				3		2									1			
	321A	and		-											-			

Bioinorg							
anic							
Chemistr							
У							

1=weakly mapped

2= moderately mapped

3=strongly mapped

						Prog	amm	e and	Cour	rse N	Iappi r	ıg			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO11	PSO	PSO	PSO3	PSO4
										10		1	2		
CO1	3														
CO2	3														
CO3	3														
CO4			3												
CO5	3												3		
CO6			3												
	1	1=lightly mapped2= moderately mapped3=strongly map										y mapp	bed		

BSCH371A	Organometallic and Bioinorganic	L	Т	Р	С
	Chemistry Practicals				
Version 2.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of water quality parameters				
Co-requisites					

Course Objectives

- 1. To learn about synthesis of coordination complexes.
- 2. To learn about preparation of Grignard reagent and dye using Grignard reagent.
- 3. To determine conductivity of metal complexes.
- 4. Performing risk assessment of chemical experiments and chemical analytical activity

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand simple methods used for synthesis of metal complexes.

CO2. Describe the applications of Grignard reagent used for preparation of dye and other compounds.

CO3. Enable to prepare Schiff base-metal complexes and their application for water purification.

CO4. Students will learn the application of spectroscopy and conductometry in such ways to make informed conclusions and decisions about controversial environmental issues.

- CO5. Learn to work with others as part of a team to solve scientific problems.
- CO6. Trained in analytical and instrumental skills required for their development.

Catalog Description

This course covers some simple methods for preparation of metal complexes in the laboratory and their identification using different analytic techniques like spectroscopy and conductometry. The course also gives hand on experience to use analytical instruments which will help them to think about the research work.

Course Content30 lecture

List of Laboratory experiments

(necessary infrastructure may be developed and adequate precaution should be maintained to conduct such experiments; instructor may demonstate the experiment to students)

- 1. Rection of metal with halide preparation of Grignard reagent. (only
- demonstrationpurpose)

2. Grignard preparation of dye (malachite green (using methylbenoate)/crystal violet (using diethylcarbonate) (starting material as p-bromo N, N-dimethyl aniline) (only demonstration purpose)

3. PreparationofvariousSchiffbase-

metalcomplexes and their identification using spectroscopy.

- 4. Preparation of any two of the following complexes and measurement of their
- conductivity measurement:
- a. tetraamminecarbonatocobalt (III) nitrate
- b. tetraamminecopper (II)sulphate
- c. potassium trioxalatoferrate (III) trihydrate

Recommended books/reference books

- 1. Synthesis of organometallic compounds: A practical guide, S. Komiya, Wiley.
- 2. A.I. Vogel: Qualitative Inorganic Analysis, Prentice Hall, 7thEdn.

3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Textbook of Practical Organic Chemistry*, Prentice-Hall,

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

Relationship between the Course Outcomes (COs) and Program Outcomes (POs) Mapping between COs and Pos

	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand simple methods used for synthesis of metal complexes.	PO1, PSO1
CO2	Describe the applications of Grignard reagent used for preparation of dye and other compounds.	PO5
CO3	Enable to prepare Schiff base-metal complexes and their application for water purification.	PO1, PO6, PSO1
CO4	Students will learn the application of spectroscopy and conductometry in such ways to make informed conclusions and decisions about controversial environmental issues.	PO6, PSO2
CO5	Learn to work with others as part of a team to solve scientific problems.	PO8
CO6	Trained in analytical and instrumental skills required for their development.	PO4, PSO2

		Enhance	Develop	Demonstra	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systemat	Appreci	Learn	Apply
		ment in	ment of	te	of	ion	g	nding of	communic	1	y to deal	ic and	ate the	proble	principl
		Advance	critical,	interdiscip	fundament	towards	capabilit	impact of	ation	aware	with	coherent	techniq	m	es
		d	logical	linary	al	research	y to work	chemicals	skills	ness	professio	understa	ues for	solvin	of chem
		Scientifi	and	approach	concepts	and	independ	on the		and	nal	nding of	the	g	istry to
		c	innovati		and	develop	ently as	environm		digital	responsibi	theoretic	qualitat	approa	address
		knowled	ve		instrument	ment	well as a	ent		literac	lities	al and	ive and	ch	societal
		ge about	thinking		ation		member			у		practical	quantita		problem
		chemistr			techniques		of the					concepts	tive		S
		у					diverse						analysis		
							team								
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Organome														
	tallic and														
BSCH3	Bioinorga	2			1	1	3		1			3	2		
71A	nic	2			1	1	5		1			5	2		
	Chemistry														
	Practicals														

1=weakly mapped

2= moderately mapped

3=strongly mapped

Programme and Course Mapping															
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3											3			
CO2					3										
CO3	3					3						3			
CO4						3							3		
CO5								3							
CO6				3									3		
1=lightly mapped2= moderately mapped3=strongly mapped															

BSCH304A	Environmental Chemistry	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Environment				
Co-requisites					

1. To aware the students about four spheres of environment.

2. To learn the students about different types of pollution and their impact on

environment.

3. To demonstrate knowledge of chemical and biochemical principles of fundamental environmental processes in air, water, and soil.

4. To communicate environmental concerns and awareness to audiences in relevant formats in a straightforward and professional manner.

Course Outcomes

On completion of this course, the students will be able to

CO1. Recognize different types of toxic substances & responses and analyze toxicological information.

CO2. Apply basic chemical concepts to analyze chemical processes involved in different environmental problems (air, water & soil).

CO3. Describe water purification and waste treatment processes and the practical chemistry involved.

CO4. Describe causes and effects of environmental pollution by energy industry and discuss some mitigation strategies.

CO5. Explain energy crisis and different aspects of sustainability.

CO6. Discuss local and global environmental issues based on the knowledge gained throughout the course.

Catalog Description

This course imparts the knowledge of composition of atmosphere and biogeochemical cycle of major nutrients like C, N, P, S and O system. The course introduces analytical methods for determination of heavy metals present in water. This course helps them to get an idea of adverseeffect of industrialization, population and degradation of natural resources on the environment due to which concentration of greenhouse gases, air pollutant is increasing.

Course Content

UNIT I

15 Lecture

Environment:

Composition of atmosphere, temperature variation of earth atmospheric system (temperature vs. altitude curve), biogeochemical cycles of C, N, P, S and O system.

15 Lectures

Hydrological cycle, aquatic pollution and water quality parameters - Dissolve oxygen, biochemical oxygen demand, chemical oxygen demand, Analytical methods for the determinationfluoride, chromium and arsenic, residual chlorine and chlorine demand, purification and treatment of municipal water and waste water.

UNIT III

UNIT II

Hydrosphere:

Atmosphere:

Chemical composition of atmosphere-particle, ions, and radical sintheir formation, chemical and photochemicalreactionsinatmosphere, smogformation, oxidesofN, C, S, and Oand their effect, pollution by chemicals, CFC, Green House effect, acid rain, air pollution and control.

UNIT IV

Aquatic chemistry:

Water and its necessities, various water quality parameters (DO, BOD, COD, conductivity, pH, alkalinity, hardness) and its determination, Industrial, municipal water treatment processes, Waste watertreatmentprocedure(primary, secondaryandtertiary), Solidwastetreatment. Soilpollution and Noisepollution.

Recommended Books/References:

- 1. De.A.K.Environmental Chemistry, Wiley Eastern Ltd, 1990.
- 2. Miller T.G.Jr., Environmental Science, Wadsworth publishing House, Meerut Odum.E.P.1971.

3. Odum, E.P. (1971) Fundamentals of Ecology. Third Edition, W.B. Saunders Co., Philadelphia

4. S. E. Manahan, Environmental chemistry, 1993, Boca Raton, Lewis publisher

5. Environmental chemistry, Sharma and Kaur, 2016, Krishnapublishers

6. Environmental Pollution, Monitoring and control, S.M. Khopker, 2007, New Age International.

Environmental chemistry, C. Baird, M. Cann, 5thEdn, 2012, W.H.Freemanpublication. 7.

9G. S. Sodhi Fundamental Concepts of Environmental Chemistry (Third Edition) Narosa(2009).

Principles of instrumental analysis: D. A. Skoog, Fifth Edition, Sauns College 10. Publishing (London)

11 Basic concepts of analytical chemistry: S. M. Khopkar, Wiley Eastern(1995)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination
Examination Scheme:

Components	Quiz/A	Attenda Mid Term		Presentation/	End Term	
	ssignm	nce	Exam	Assignment/ etc.	Exam	
	ent					
Weightage (%)	10	10	20	10	50	

15 Lectures

15 Lectures

Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Recognize different types of toxic substances & responses and analyze toxicological information.	PO1, PO3,						
CO2	Apply basic chemical concepts to analyze chemical processes involved in different environmental problems (air, water & soil).	PO2, PSO2						
CO3	Describe water purification and waste treatment processes and the practical chemistry involved.	PO5, PO7						
CO4	Describe causes and effects of environmental pollution by energy industry and discuss some mitigation strategies	PO7						
CO5	Explain energy crisis and different aspects of sustainability.	PO7, PO10						
CO6	Discuss local and global environmental issues based on the knowledge gained throughout the course.	PO7, PSO4						

Course Code	Course Title Environ	Enhanc ement in Advanc ed Scientifi c knowle dge about chemist ry PO1	Develo pment of critical, logical and innovati ve thinking PO2	Demonstr ate interdisci plinary approach PO3	Learning of fundame ntal concepts and instrume ntation techniqu s PO4	tion toward researc h and develop ment	ng s capabilit y to work	Understa nding of impact of chemical s on the environ ment PO7	Fostering communi cation skills PO8	Ethica l aware ness and digital literac y PO9	Capabilit y to deal with professio nal responsi bilities PO10	System tic and coheren underst nding o theoreti al and practica concep	ciate ciate the ta techn of ques ic for th quali al tive	proble m solvin g appro ta ach tit ysi	Apply principl es of che mistry to address societal proble ms PSO4
BSCH 304A	mental Chemistr y	1	1	1		1		3			1				2
1=weakly	•	2= modera	tely mapp	ed 3=stron	gly mappe	d									
							Progra	amme and	Course M	apping					
C	0	PO1	PO2	PO3	PO4	PO5 I	PO6 PO	7 PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
	01	3		3											
	02		3										2		
	03					3	3								
	04						3								
	05						3			3					
C	O6						3								2
					1=lightly	mapped	2= r	noderately	mapped	3	=strongly	mapped			

BSCH354A	Enviromental Chemistry Practicals	L	Т	Р	С
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of water quality parameters				
Co-requisites					

- 1. To introduce water quality parameters like COD, BOD, DO.
- 2. To learn about determination of water quality parameters.
- 3. To determine the %age of chlorine in bleaching powder.
- 4. To determine alkalinity of water sample.
- 5. Performing risk assessment of chemical experiments and chemical analytical activity

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the basic principles involved in analytical techniques.

CO2. Describe water purification and waste treatment processes and the practical chemistry involved.

CO3. Enable how to communicate scientific information clearly and accurately, both in oral and in written forms.

CO4. Students will learn to think analytically and assess information in such ways to make informed conclusions and decisions about controversial environmental issues.

CO5. Learn to work with others as part of a team to solve scientific problems.

CO6. Trained in analytical and instrumental skills required for environmental monitoring of pollutants.

Catalog Description

This course covers some simple methods for determination water quality parameter like COD, BOD, and DO. The course also gives hand on experience for determination of some major anions present in water sample.

Course Content

30 lecture

List of suggested laboratory practical

Determination of water quality parameters in following aspect:

1. Determination of dissolved oxygen in given water (chemical method/instrumentation method).

2. Determination of Biological Oxygen Demand (BOD5).

- 3. Determination of Chemical Oxygen Demand(COD).
- 4. Finding out percentage of available chlorine in bleachingpowder.
- 5. Measurement of chloride, sulphate and salinity of water samples by titration method (AgNO3 and potassiumchromate).
- 6. Estimation of total alkalinity of water samples (carbonate, bicarbonate) by titrationmethod.
- 7. Estimation of SPM in airsamples.

List of Recommended books/Reference Books:

1. R.M. Felder, R.W. Rousseau: *Elementary Principles of Chemical Processes*, John Wiley & Sons, Inc. Publishers, New Delhi.(2005 edition).

3. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, NewDelhi.

4. S. S. Dara: *A Textbook of Engineering Chemistry*, S. Chand & Company Ltd. NewDelhi.

- 5. A. K. De, *Environmental Chemistry*: New Age International Pvt., Ltd, NewDelhi.
- 6. S. M. Khopkar, *Environmental Pollution Analysis*: New Age Int. Publisher, NewDelhi.

(The list of experiments and books are purly suggestive; University/institute may incorporate further changes in number of experiments and books/references (updated version from time to time) based on course design and available infrastructure facilities).

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of Experiment	Lab Record/Quizzes / Viva-Voce	Attendance	End Term PracticalExamin ation
Weightage (%)	20	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the basic principles involved in analytical techniques.	PO1
CO2	Describe water purification and waste treatment processes and the practical chemistry involved.	PO5, PO7, PSO4
CO3	Enable how to communicate scientific information clearly and accurately, both in oral and in written forms.	PO6
CO4	Students will learn to think analytically and assess information in such ways to make informed conclusions and decisions about controversial environmental issues.	PO6, PO7
CO5	Learn to work with others as part of a team to solve scientific problems.	PO8, PSO3
CO6	Trained in analytical and instrumental skills required for environmental monitoring of pollutants.	PO2, PO7, PSO4

		Enhanc	Develo	Demonstr	Learning	Orienta	Acquiri	Unders	Foster	in E	Ethic	Capabili	System	a Ap	pre	Learn	Apply
		ement	pment	ate	of	tion	ng	anding	g		al	ty to	tic and	cia		probl	princip
		in	of	interdisci	fundame	toward	capabili	of	comm	un a	aware	deal	coheren	n the	;	em	les
		Advanc	critical,	plinary	ntal	s	ty to	impact	ication	n n	ness	with	t	tec	chni	solvin	of che
		ed	logical	approach	concepts	researc	work	of	skills	a	and	professi	underst	a qu	es	g	mistry
		Scientif	and		and	h and	indepen	chemic	a	d	digita	onal	nding o	of for	the	appro	to
		ic	innovat		instrume	develo	dently	ls on th	e	1	1	responsi	theoret	i qu	alita	ach	address
		knowle	ive		ntation	pment	as well	enviror		1	litera	bilities	cal and	tiv	e		societa
		dge	thinkin		techniqu		as a	ment		С	су		practic	a an	d		1
		about	g		es		member						1	qu	antit		proble
		chemist					of the						concep	t ati	ve		ms
		ry					diverse						S	ana	alysi		
							team							s			
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	F	PO9	PO10	PSO1	PS	02	PSO3	PSO4
BSCH 354A	Environ mental Chemist ry Practical	2	1			2	3	3	1							2	2
1=weakl	y mapped	12 = mode	erately m	apped 3=s	trongly m	apped											
			-				ogramm	e and C	ourse M		ng						
СО	PO1	PO2	PO3	PO4	PO5	PO6		PO8		PO10		011 PS	01 PS	SO 2	PS	03	PSO4
CO1	3																
CO2					3		3										3

		Programme and Course Mapping													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3														
CO2					3		3								3
CO3						3									
CO4						3	3								
CO5								3							
CO6		3					3							3	3
	1=lightly mapped						2= moderately mapped 3=strongly mapped								

BSCH306A	Organic Spectroscopy	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

In this course students will learn and understand the basic concepts of spectroscopy, difference between emission and absorption spectroscopy, laws of photochemistry, basic principles and working of UV-Visible, IR, NMR, Mass Spectroscope and how structure of organic molecules can be predicted based on UV-Visible, IR, NMR and mass spectrum.

Course Outcomes

On completion of this course, the students will be able to

CO1:Gain knowledge about the basic concept of absorption and emission spectroscopy,fundamentals of UV-Visible spectroscopy.

CO2: Learn the principle of instrumentation and applications of IR, ¹H NMR and ¹³C spectroscopy.

CO3:Understand the mass fragmentation pattern of organic compounds.

CO4:Analyze IR, UV, NMR, Mass spectrometry data and elucidate the structure of simple organic molecules based upon that data.

Catalog Description

Number of organic compounds is synthesized in the laboratories as they are used for several applications such as pesticides, food, cosmetics, essential oils, fats and oils, medicines, paints and varnishes, polymers etc. It is important to understand and establish their structure based on spectroscopic tools such as UV-Visible, IR, NMR and Mass spectroscopy. While on one hand, UV-Visible confirms saturation and unsaturation in the molecule on the other hand IR helps to find out the type of functional group present in the organic molecule. NMR determines the number and type of protons or ¹³C in the molecule and mass spectroscopy determines the molecular ion peak. In short, all this helps in characterization or structural elucidation of the organic moiety. In this course, the focus will be on thorough understanding of concepts of spectroscopy through class room teaching, video lectures, expert talks and analysis of data available for known compounds. Large number of practice problems will be discussed so that students acquire the technique and knowledge to handle the subject in appropriate manner.

Course Content

UNIT I

Basic Principles of UV Spectroscopy:

Application of Woodward-Fieser rule in interpretation of Organic compounds: Application of visible, ultraviolet and infrared spectroscopy in organic molecules. Electromagnetic radiation, electronictransitions, λ max&emax,chromophore,auxochrome,bathochromicandhypsochromic shifts. Application of electronic spectroscopy and Woodward rules for calculating λ max of conjugated dienes and α , β – unsaturated compounds.

15 lecture

UNIT II

Basic principles of IR Spectroscopy:

Identification of Functional groups of various classes of organic compounds: Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).

UNIT III

NMR (¹H and ¹³C NMR):

Application of Chemical Shifts, Splitting of signals, Spin coupling and Over Houser effect in interpretation of NMR spectra, Isotopic exchange

UNIT IV

Basic principles Mass Spectrometry:

Applicationoffragmentationruleincharacterizationoforganiccompounds.Problemsonstructure elucidation of organic compounds based on spectraldata.

Recommended Books/References:

1. R.M. Silverstein, G.C. Bassler & T.C. Morrill: *Spectroscopic Identification of Organic Compounds*, John Wiley & Sons.

2. John R. Dyer, Applications of absorption spectroscopy of organic compounds, Prentice Hall India (2012).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	Mid Term	Presentation/	End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

15 lecture

15 lecture

15 lecture

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the basic concept of absorption and emission spectroscopy, fundamentals of UV-Visible spectroscopy.	PO1, PO4
CO2	Learn the principle of instrumentation and applications of IR, ¹ H NMR and ¹³ C spectroscopy.	PO1, PO4
CO3	To understand the mass fragmentation pattern of organic compounds	PO1, PO2
CO4	To analyze IR, UV, NMR, Mass spectrometry data and elucidate the structure of simple organic molecules based upon that data.	PO2, PO4, PSO2, PSO3

		Enhanc	Develo	Demonst	Learnin	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	g of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	em	ples
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	solvi	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and		and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on		1	responsi	of	qualit	ach	addres
		knowle	ive		ntation	pment	as well	the		litera	bilities	theoreti	ative		S
		dge	thinkin		techniqu		as a	environ		cy		cal and	and		societ
		about	g		es		membe	ment				practica	quanti		al
		chemist					r of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					S	is		
Cours e Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Organi														
BSCH	С	3	2		3								2	2	
306A	Spectr	0	-		-								_	_	
	oscopy														

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

		Programme and Course Mapping													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3			3											
CO2	3			3											
CO3	3	3													
CO4		3		3									3	3	
	1=lightly mapped							derately r	napped	3	=strongly	mapped			

BSCH356A	Organic Spectroscopy Practicals	L	Т	Р	С
Version 3.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

In this course students will learn and understand the basic concepts of spectroscopy, understanding of basic principles and working of UV-Visible, IR, NMR, Mass Spectroscope and how structure of organic molecules can be predicted based on UV-Visible, IR, NMR and mass spectrum.

Course Outcomes

On completion of this course, the students will be able to

CO1: understand the working of UV-Visible spectroscope.

CO2: learn the principal and applications of IR.

CO3: understand ¹H NMR and ¹³C spectroscopy

CO4: analyze IR, UV, NMR, Mass spectrometry data and elucidate the structure of simple organic molecules based upon that data.

Catalog Description

In this course, the focus will be on thorough understanding of concepts of spectroscopy through hand on synthesis of organic compounds such as dyes and other organic compounds and take their IR NMR etc. Assign and establish their peaks. Based on data compounds needs to be identified.

Course Co	ntent
------------------	-------

30 lecture

Suggested laboratory experiments

1. Purification method for liquid, solid organic substance (distillation, recrystallization, chromatography)

2. Analysis of spectra of UV-VIS, FTIR, NMR and Mass of simple organic compounds. (students may encourage to prepare simple organic compounds following given protocol (azodyes, acetanilides, benzoic acid, etc.) (or may use commercially available organic compounds) and can be trained to identify/analyze important peaks/functionality, determine mass of the molecules (mass-spectra). They can submit a report regarding their analysis to courseteacher.

(Note: A candidate must perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of	Lab	Attendance	End Term
	Experiment	Record/Quizzes		PracticalExamin
		/ Viva-Voce		ation
Weightage	20	20	10	50
(%)				

	Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program Outcomes									
CO1	Understand the synthesis of simple organic compounds and their characterization	PO1, PSO1									
CO2	Learn the principle of instrumentation and applications of IR, ¹ H NMR and ¹³ C spectroscopy.	PO1, PO4, PSO1									
CO3	To understand the mass fragmentation pattern of organic compounds	PO1, PO2, PSO1									
CO4	To analyze IR, UV, NMR, Mass spectrometry data and elucidate the structure of simple organic molecules based upon that data.	PO2, PO4, PSO1, PSO2, PSO3									

		Enhanc	Develo	Demonst	Learnin	Orient	Acquiri	Underst	Fosterin	Ethic	Capabili	System	Appre	Learn	Apply
		ement	pment	rate	g of	ation	ng	anding	g	al	ty to	atic and	ciate	probl	princi
		in	of	interdisci	fundame	toward	capabili	of	commun	awar	deal	coheren	the	em	ples
		Advanc	critical,	plinary	ntal	S	ty to	impact	ication	eness	with	t	techni	solvi	ofche
		ed	logical	approach	concepts	researc	work	of	skills	and	professi	underst	ques	ng	mistry
		Scientif	and	11	and	h and	indepen	chemica		digita	onal	anding	for the	appro	to
		ic	innovat		instrume	develo	dently	ls on		1	responsi	of	qualit	ach	addres
		knowle	ive		ntation	pment	as well	the		litera	bilities	theoreti	ative		s
		dge	thinkin		techniqu	1	as a	environ		cy		cal and	and		societ
		about	g		es		membe	ment		2		practica	quanti		al
		chemist	C				r of the					1	tative		proble
		ry					diverse					concept	analys		ms
							team					s	is		
Cours e Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Organi														
	c														
BSCH	Spectr	3			2							2	2		
356A	oscopy	3	2		2							3	2	2	
	Practic														
	als														
1=weakly	y mapped2	= moderat	ely mappe	ed3=strongl	y mapped										
						P	rogramm	e and Cou	ırse Mappi	0					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	10 PC	D11 PS	D1 PSO	2 PS	03	PSO4
CO1	3										3				
CO2	3			3								3			
CO3	3	3										3			
CO4		3		3								3 3		3	
				1=lig	htly mappe	ed	2= moder	rately map	ped	3=stro	ngly mapp	ed			

BSCH311A	BIOMOLECULES	L	Т	Р	С
Version 3.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of reaction mechanism				
Co-requisites					

- 3. To enable the students to understand biomolecules and their function in living system.
- 4. To provide exposure of energy molecules in living system.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the role of nucleic acid in genetic system and differentiate nucleotide from nucleosides, DNA and RNA, replication from transcription

CO2. Appreciate the chemistry of amino acids, peptides and proteins and their methods of synthesis

CO3. Gain insights about the factors affecting enzyme's action in biochemical reactions

CO4. Differentiate the structure and functions of carbohydrates and the methods of interconversion

CO5. Evaluate the role of energy molecules in living system by studying their metabolism CO6. Learn about importance of biomolecules in living system

Catalog Description

This course comprise of Nucleic acids and their importance in heredity as in Genetic coding. Syllabus has details Synthesis of amino acids and their role in peptide linkage to form proteins. It also provides information regarding enzymes and their role. The exposure of energy molecules in life also the important parts this syllabus.

Course Content	
Unit I	15Lectures

Nucleic Acids: Structure of components of nucleic acids: Bases, Sugars, Nucleosides and Nucleotides. Nomenclature of nucleosides and nucleotides, structure of polynucleotides (DNA and RNA), concept of DNA duplex formation and its characterization.Biological roles of DNA and RNA. Concept of heredity:Genetic Code, Replication, Transcription and Translation.

Unit II

Amino Acids, Peptides and Proteins: Amino acids, Peptides and their classification. α -Amino Acids - Synthesis, ionic properties and reactions. Zwitterions, pKa values, isoelectric point and electrophoresis; Study of peptides: determination of their primary structure-end group analysis. Synthesis of peptides using N-protecting, C-protecting and C- activating groups, Solid-phase synthesis; primary, secondary and tertiary structures of proteins, Denaturation of proteins.**Enzymes:** Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes.

15 Lectures

Mechanism of enzyme action (taking chymotrypsin as an example), factors affecting enzyme action, coenzymes and cofactors (NAD,FAD), specificity of enzyme action (including stereospecificity), enzyme inhibitors and their importance.

Unit III

15 Lectures

Carbohydrates and lipids: Occurrence, classification and their biological importance. Monosaccharides: Constitution and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projection and conformational structures; Interconversion of aldoses and ketoses; Killiani-Fischer synthesis and Ruff degradation; Disaccharides – Structure elucidation of maltose,lactoseandsucrose.Polysaccharides–

Elementary treatment of starch, cellulose and gly cogen.

Introduction to oils and fats: common fatty acids present in oils and fats, Hydrogenation of fats and oils, Saponification value, acid value, iodine number. Reversion and rancidity.

Unit IV

15 Lectures

Concept of Energy in Biosystems: Introduction to metabolism (catabolism, anabolism). ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. Agents for transfer of electrons in biological redox systems: NAD⁺, FAD. Outline of catabolic pathways of carbohydrate-glycolysis, fermentation, Krebs cycle. Caloric value of food, standard caloric content of food types.

Reference Books:

- 1. Berg, J.M.; Tymoczko, J.L.; Stryer, L. (2006), Biochemistry. W.H. Freeman and Co.
- 2. Nelson, D.L.; Cox, M.M.; Lehninger, A.L.(2009), Principles of Biochemistry. W.H. Freeman and Co.
- 3. Murray, R.K., Granner, D.K., Mayes, P.A.; Rodwell, V.W.(2009), Harper's Illustrated Biochemistry. Lange Medical Books/McGraw-Hill.
- 4. Brown, T.A. (2018) Biochemistry, (First Indian addition 2018) VivaBooks.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A	Attenda	enda Mid Term Presentation/		End Term
	ssignm	nce	Exam	Assignment/ etc.	Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs							
	Course Outcomes (COs)							
C01	Understand the role of Nucleic acid in Genetic system.	PO3, PSO4						
CO2	Learn about amino acids, peptides and proteins.	PO1, PO3, PO4, PSO4						
CO3	Application of enzymes in biochemical reaction.	PO5, PSO4						
CO4	Learn about carbohydrates and metabolism	PO1, PO3, PSO4						
CO5	Understand the role of energy molecules in living system.	PO3						
CO6	Learn about importance of biomolecules in living system.	PO3						

				Demonstr	Learning		Acquiri		Fostering		Capabilit	Systema	Appre	Learn	Apply
		Enhanc	Develo	ate	of	Orienta	ng	Underst	communi	Ethic	y to deal	tic and	ciate	probl	princip
		ement	pment	interdisci	fundame	tion	capabilit	anding	cation	al	with	coherent	the	em	les
		in	of	plinary	ntal	toward	y to	of	skills	aware	professio	understa	techni	solvin	ofche
		Advanc	critical,	approach	concepts	S	work	impact		ness	nal	nding of	ques	g	mistry
		ed	logical		and	researc	indepen	of		and	responsi	theoreti	for the	appro	to
		Scientif	and		instrume	h and	dently	chemica		digita	bilities	cal and	qualita	ach	addres
		ic	innovati		ntation	develo	as well	ls on the		1		practical	tive		S
		knowle	ve		techniqu	pment	as a	environ		literac		concept	and		societa
		dge	thinkin		es		member	ment		У		S	quantit		1
		about	g				of the						ative		proble
		chemist					diverse						analysi		ms
		ry					team						S		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH	BIOMOLE														
311A	CULES	2		3	1	1									
1=weakly	y mapped 2=	moderate	ly mapped	d 3=strongly	/ mapped										
					Prog	gramme a	and Cours	e Mappin	g						
СО	PO1	PO2	PO3	PO4 P	O5 PC)6 PC	PO	8 PO	9 PO 10	PO11	PSO1	PSO 2	2 PS	SO3	PSO
															4
CO1			3												2
CO2	3		3	3											2
CO3			3		3										2
CO4	3	3													2
CO5		3													
CO6		3													
		1	1_lich	tly mapped	2-	- moderat	ely mappe	4	3=strongly	u monno	4	I	1		

BSCH361A	BIOMOLECULES LABS	L	Т	Р	С
Version 2.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of BIOMOLECULES				
Co-requisites					

- 1. To enable the student for hands on learning by experiments.
- 2. To generate confidence among students to perform reactions or analysis.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand the volumetric titrations.
- CO2. Estimate Carbohydrate and Proteins.
- CO3. Understand the action of salivary gland amylase.
- CO4. Analyze the saponification number and Iodine value of lubricants.

CO5. Learn about the environment safety at the time of performing experiment.

Catalog Description

This course contains estimation of glucose and proteins, study of amylase action, analysis of Saponification number and Iodine value of oils.

Course Content

30 lecture

- 1. Estimation of glucose by Fehling'ssolution.
- 2. Study of the titration curve of glycine.
- 3. Estimation of proteins by Lowry'smethod.
- 4. Study of the action of salivary amylase on starch under optimumconditions.
- 5. Effect of temperature on the action of salivaryamylase.
- 6. Isolation and estimation of DNA usingcauliflower/onion.
- 7. Saponification value of the given oil.
- 8. Determination of Iodine number of the givenoil.

References books:

1. **Manual of Biochemistry Workshop**, 2012, Department of Chemistry, University ofDelhi.

2. Kumar,A.;Garg,S.;Garg,N.(2012),**BiochemicalTests:PrinciplesandProtocols**.Viva Books.

(Note: A candidate has to perform at least eight experiments in the lab.

Anysuitableexperimentmay be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Understand the volumetric titrations.	PO1, PSO1					
CO2	Estimate Carbohydrate and Proteins.	PO5, PSO1					
CO3	Understand the action of amylase.	PO4					
CO4	Analyze the saponification number and Iodine value of lubricants.	PO1, PSO1					
CO5	Learn about the environment safety at the time of performing experiment.	PO7					

				Demonst	Learnin		Acquiri		Fosterin		Capabili	System	Appre	Learn	Apply
		Enhanc	Develo	rate	g of	Orient	ng	Underst	g	Ethic	ty to	atic and	ciate	probl	princi
		ement	pment	interdisci	fundame	ation	capabili	anding	commun	al	deal	coheren	the	em	ples
		in	of	plinary	ntal	toward	ty to	of	ication	awar	with	t	techni	solvi	ofche
		Advan	critical,	approach	concepts	S	work	impact	skills	eness	professi	underst	ques	ng	mistry
		ced	logical		and	researc	indepen	of		and	onal	anding	for the	appro	to
		Scienti	and		instrume	h and	dently	chemica		digita	responsi	of	qualit	ach	addres
		fic	innovat		ntation	develo	as well	ls on		1	bilities	theoreti	ative		S
		knowle	ive		techniqu	pment	as a	the		litera		cal and	and		societ
		dge	thinkin		es		membe	environ		cy		practica	quanti		al
		about	g				r of the	ment				1	tative		proble
		chemis					diverse					concept	analys		ms
		try					team.					S	is		
Cours	Course														
e	Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Code															
BSCH	ORGA														
203A	NIC				2	1						2			
	CHEMI	1			2	1		1				3			
	STRY-														
1-wooldw	III	- modorat	aly monno	d3=strongl	v mannad										
			ery mappe	us-suoligi	y mapped	р	rogramm	e and Cou	rse Mappi	าฮ					
СО	PO1	PO2	PO3	PO4	PO5		8		O9 PO 1	0	011 PSC	D1 PSO	2 PS	03	PSO4
C01			- 30	3								3			
CO2					3							3			
CO3				3	-										
CO4	3											3			
CO5							3								
	·	·		1=lig	htly mappe	d	2= moder	1=lightly mapped 2= moderately mapped 3=strongly mapped							

BSCH302A	Chemistry of Materials	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of solid states and composite materials				
Co-requisites					

- 1. To understand basic parameters of crystalline solids, symmetry and crystal structure.
- 2. To learn about the applications of silica-based materials.
- 3. To differentiate between mesoporous and microporous silica-based materials
- 4. To give hand on experience of sol-gel techniques for preparation of materials.

Course Outcomes

On completion of this course, the students will be able to

CO1. Learn about advanced material synthesis and material characterization.

CO2. Learn about the connections between the structure and properties of solids, including theory.

CO3. Learn to conduct chemical analyses and characterization of the physical properties of solids.

CO4. Understand about the composites and their industrial applications.

CO5. Familiar with synthesis of crystalline materials via solid state reactions.

CO6. Apply techniques for developing literacy and higher order thinking in teaching methods.

Catalog Description

his course imparts basic knowledge of crystallographic and crystal chemical concepts such as unit cell, Miller indices, close packing etc. This course introduces different types of defects in crystalline solids which are responsible for the electrical conductivity, thermal conductivity and their coloration properties. The course will provide a basic understanding of the composite materials, the role of matrix in composites and use of fibre-reinforced composites in structural applications.

Course Content

UNIT I

Basics of crystalline solids:

Crystalline solids, crystal systems, Bravais lattices, coordination number, packing factors – cubic, hexagonal, diamond structures, lattice planes, Miller indices, interplanar distances, directions, types of bonding, lattice energy, Madelung constants, Born Haber cycle, cohesive energy, Symmetryelements,operations,translationalsymmetriespointgroups,spacegroups,equivalent positions, close packed structures, voids, crystal structures, Pauling rules, defects in crystals, polymorphism,twinning.

15 Lectures

Introduction to Zeolites, metallosilicates, silicalites and related microporous materials, Mesoporous silica, metal oxides and related functionalized mesoporous materials: Covalent organic frameworks, Organic-Inorganic hybrid materials, periodic mesoporous organo silica, metal organic frameworks: H2 /CO2 gas storage and catalytic applications

UNIT III

UNIT II

Silica based materials:

Inorganic solids/ionic liquids of technological importance:

Preparation of inorganic solids: Conventional heat and beat methods, Co-precipitation method, Sol-gelmethods, Hydro-thermalmethod, Ion-exchange and Intercalation methods. Introduction to Solid electrolytes, inorganic liquid crystals. Ionic liquids, forces responsible for ionic liquids, synthesis and application of imidazolium and phosphonium based ionic liquids. Host-guest chemistry (elementaryideas).

UNIT IV

Composite materials:

Introduction, limitations of conventional engineering materials, role of matrix in composites, classification, matrix materials, reinforcements, metal-matrix composites, polymer-matrix composites, fibre-reinforced composites, environmental effects on composites, applications of composites.

Recommend books/References:

Atkins P, Overton T., Rourke J. Weller M. and Armstrong F Shriver and Atkins. 1. Inorganic Chemistry Oxford University Press, Fifth Edition, 2012.

2. Adam, D.M. Inorganic Solids: An introduction to concepts in solid-state structural chemistry. JohnWiley, 1974.

3. Poole, C.P. & Owens, F.J. Introduction to Nanotechnology John Wiley2003.

4. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning, 2002.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination **Examination Scheme:**

Components	Quiz/A ssignm	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
	ent				
Weightage (%)	10	10	20	10	50

15 Lectures

15 Lectures

15 Lectures

	Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Learn about advanced material synthesis and material characterization.	PO5, PSO1					
CO2	Learn about the connections between the structure and properties of solids, including theory.	PO2					
CO3	Learn to conduct chemical analyses and characterization of the physical properties of solids.	PO4					
CO4	Understand about the composites and their industrial applications.	PO1, PO4					
CO5	Familiar with synthesis of crystalline materials via solid state reactions.	PO1, PO3					
CO6	Apply techniques for developing higher order thinking	PO2					

		Enhance ment in Advanc ed Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstr ate interdiscip linary approach to draw a logical conclusio n	Learning of fundamen tal concepts and instrumen tation technique s decipher	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse	Understa nding of impact of chemical s on the environ ment	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsib ilities	Systemat ic and coherent understa nding of theoretic al and practical concepts	Apprec iate the techniq ues for the qualitat ive and quantit ative analysi s	Learn probl em solvi ng appro ach	Apply princi ples of chemi stry to addre ss societ al probl
Course Code	Cours e Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH3 02A	Chemi stry of Materi als	2	1	1	3	3	3					1			

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

	Programme and Course Mapping														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1					3							3			
CO2		3													
CO3				3											
CO4	3			3											
CO5	3		3												
CO6		3				3									
	1=lightly mapped						2 = mo	2= moderately mapped 3=strongly mapped							

BSCH352A	Chemistry of Materials Practicals	L	Т	Р	С
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of resins and analytics techniques				
Co-requisites					

- 1. To introduce the preparation methods of resins
- 2. To introduce synthesis of porous materials and nanomaterial using various techniques.
- 3. To learn about some analytical techniques.
- 4. To solve problems related to chemical analysis and interpret analytical results.
- 5. To provide experience in some scientific methods employed in analytical chemistry.
- 6. Performing risk assessment of chemical experiments and chemical analytical activity

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the basic principles involved in analytical techniques.

CO2. Learn about techniques to measure crystallinity, structure and composition of nanomaterials.

CO3. Enable how to communicate scientific information clearly and accurately, both in oral and in written forms.

CO4. Idea about the composition of written laboratory reports that summarize experimental procedures and the accurately present and interpret data.

CO5. Learn to work with others as part of a team to solve scientific problems.

CO6. Learn to find out the size of particles through different techniques.

Catalog Description

This course covers the simple synthesis method of resin using polymers, porous materials and nanomaterial using sol-gel, hydrothermal or microwave method. The course gives introduction and hand on experience of analytical techniques and an overview of important analytical methods and their range of application within detection of inorganic and organic compounds.

Course Content

30 lecture

(The list of experiments are suggestive. However, faculties/academic bodies may add more experiments/references or incorporate suitable revisions based on infrastructure facilities available).

- 1. Preparation of urea-formaldehyderesin
- 2. Preparations of novalac resin/resolresin
- 3. Synthesis of materials/porous materials (Sol-gel, hydrothermal, microwave). (Similarly other materials synthesis can be designed).

4. Preparation of silver nano material. (Similarly other nano materials of other metals synthesis can be designed).

- 5. Analysis of XRD pattern of crystals.
- 6. Interpretation of FTIR, NMR and UV-Vis data of givenmaterial.
- 7. Estimation of particle size from the BET, SEM techniques.
- 8. Density measurement of ionicliquids
- 9. Determining dynamic viscosities of given ionicliquids
- 10. Determination of hydration number IRspectra.

(Note: A candidate has to perform at least eight experiments in the lab. Any suitable experiment may be added.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct o	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the basic principles involved in analytical techniques.	PO5, PSO1
CO2	Learn about techniques to measure crystallinity, structure and composition of nanomaterials.	PO4, PSO1
CO3	Enable how to communicate scientific information clearly and accurately, both in oral and in written forms.	PO10
CO4	Idea about the composition of written laboratory reports that summarize experimental procedures and the accurately present and interpret data.	PO6, PO5
CO5	Learn to work with others as part of a team to solve scientific problems.	PO9, PO10
CO6	Learn to find out the size of particles through different techniques.	PO1, PO4, PSO1

		Enhanc	Develo	Demonstr	Learning	Orienta	Acquiri	Understa	Fostering	Ethic	Capabilit	Systema	Appre	Learn	Apply
		ement	pment	ate	of	tion	ng	nding of	communi	al	y to deal	tic and	ciate	proble	princip
		in	of	interdisci	fundame	towards	capabilit	impact	cation	aware	with	coherent	the	m	les
		Advanc	critical,	plinary	ntal	researc	y to	of	skills	ness	professio	understa	techni	solvin	of che
		ed	logical	approach	concepts	h and	work	chemical		and	nal	nding of	ques	g	mistry
		Scientif	and		and	develop	indepen	s on the		digita	responsi	theoreti	for the	appro	to
		ic	innovati		instrume	ment	dently	environ		1	bilities	cal and	qualita	ach	address
		knowle	ve		ntation		as well	ment		literac		practical	tive		societal
		dge	thinkin		techniqu		as a			У		concept	and		proble
		about	g		es		member					S	quantit		ms
		chemist					of the						ative		
		ry					diverse						analysi		
							team						S		
Course	Cours	201	200	DOD	DOL	201	DOC	205	200	DOG	DO 10	DOOL	DOOD	Daoa	DOO (
Code	e	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Title														
	Chem														
	istry														
BSCH	of Motor	1			2	2	1			1	2	3			
352A	Mater	1			2	2	1			1	2	3			
	ials Practi														
	cal														
	cai														

1=weakly mapped2= moderately mapped3=strongly mapped

	Programme and Course Mapping														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1					3							3			
CO2				3								3			
CO3										3					
CO4					3	3									
CO5									3	3		3			
CO6	3			3											
	1=lightly mapped 2= moderately mapped 3=strongly mapped														

BSCH308A	Introduction of Nanochemistry and Applications	L	Т	Р	C
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

1. To be able to understand different classifications of nanomaterials.

2. To learn the experimental methods for synthesising nanomaterials.

3. To understand characterisation techniques that can be employed to study nano dimension.

4. To develop a comprehensive knowledge about size dependent properties of nanoparticles.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand various important terms about nanochemistry.

CO2. Calculate surface to volume ratio for different shapes of nanomaterials.

CO3. Explain size dependent properties of nanomaterials.

CO4. Learn about different synthetic approaches for the preparation of nanomaterials, with examples of preparation of gold and silver nanoparticles.

CO5. Remember several different types of instrumentation for characterising nanoparticles.

CO6. Understand the use of nanomaterials in environmental remediation and biology.

Catalogue Description

This course imparts the basic concepts of nanotechnology. It enables the students to understand the idea of synthesis and structural aspects of different types of nanomaterials. The course of nanochemistry will impart the knowledge about different characterisation techniques for nanomaterials. The course also introduces the use of nanoparticles in environmental remediation and biology.

Course Content

Unit I:

15 Lectures

Introduction to nanoscience, nanostructure and nanotechnology (basic idea), Overview of nanostructures and nano-materials, classification, (cluster, colloid, nanoparticles, and nanostructures -Spheroid, Wire, Rod, Tube, and Quantum Dot); Calculation of percentage of surface atom and surface to volume ratio of spherical, wire, rod, and disc shapes nanoparticles.

Unit II:

Size dependent properties of nanomaterials (basic idea with few examples only): Quantum confinement, Electrical, Optical (Surface Plasmon resonance), variation in colors (Blue shift & Red shift), Magnetic, thermal and catalytic properties.

Unit III:

Synthesis of Nanomaterials: Brief introduction about Top-down and Bottom-up approaches & self-assembly techniques of nanoparticles synthesis, Solvothermal process, Examples of preparation of gold and silver metallic nanoparticles, self-assembled nanostructures- control of nanoarchitecture- one dimensional control. Carbon nanotubes and inorganic nanowires.

Unit IV:

Material characterization techniques (basic idea of use of following instruments in nanomaterial characterization need to be emphasized): Electron microscopic technique, diffraction technique, photoelectron spectroscopy, zeta-potential measurement; Examples of use of nanomaterials in environmental remediation and biology (few practical examples of use of materials can be discussed).

Text Books

1. C.N.R.Rao, A.Muller, A.K.Cheetam, The Chemistry of Nanomaterials: Synthesis, Properti es and Applications, Willey-VCH Verlag, Germany, 2005.

2. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, 2004

Reference Books/Materials

1. R. W. Kelsall, I. W. Hameley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, England, 2005

CharlesP.PooleandFrankJOwens,*Introductiontonanotechnology*,WileyInterscience,20
 03.

3. Pradeep, T., A text of book of nanoscience and nanotechnology, Tata McGraw Hill Education Pvt. Ltd., New Delhi,2012.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

15 Lectures

15 Lectures

15 Lectures

	Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program Outcomes									
CO1	Understand various important terms about nano chemistry	PO1									
CO2	Calculate surface to volume ratio for different shapes of nanomaterials.	PO2, PSO3									
CO3	Explain size dependent properties of nanomaterials.	PO1, PSO1									
CO4	Learn about different synthetic approaches for the preparation of nanomaterials, with examples of preparation of gold and silver nanoparticles.	PO1, PO5									
CO5	Remember several different types of instrumentation for characterizing nanoparticles.	PO1, PO4									
CO6	Understand the use of nanomaterials in environmental remediation and biology.	PSO4									

Course	Course	Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	of fundamen tal concepts and instrumen tation technique s	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	nding of impact of chemical s on the environm ent	Fostering communi cation skills PO8	Ethica 1 aware ness and digital literac y	Capabilit y to deal with professio nal responsib ilities	Systemat ic and coherent understa nding of theoretic al and practical concepts	iate the techniq ues for the qualitat ive and quantit ative analysi s	proble m solvin g appro ach	principl es ofchem istry to address societal proble ms
Code	Title	POI	PO2	PO3	PO4	P05	PO6	PO7	P08	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH3 08A	Introducti on of Nanoche mistry and Applicati ons	3	1		1	1						1		1	1
l= weakl	y mapped 2	2 = modera	itely mapp	ed 3= stron	gly mapped			and Cour							
СО	PO1	PO2	PO3	PO4	PO5 I		-		rse Mappir O9 PO 1	•	11 PSC	1 PSO	2 PSC	03	PSO4
C01	3	102	103	104					07 FUI	U FU	11 [50		<u> </u>		1504
CO1 CO2		3											3		
CO3	3										3				
CO4	3				3										
CO5	-			3											
CO6															3
		1		1=ligh	tly mappe	d	2= modera	ately mapp	ed	3=stroi	ngly mappe	ed		I	

BSCH368A	Introduction of Nanochemistry and Applications Practicals	L	Т	Р	C
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

1. To be familiarize with common instruments and glasswares used in nanoparticles synthesis.

2. To fabricate zinc oxide and silver nanoparticles.

3. To confirm the successful synthesis of the mentioned particles with the help of absorbance values.

4. To learn and verify Beer-Lambert law.

Course Outcomes

On completion of this course, the students will be able to

CO1. Synthesise zinc oxide nanoparticles.

CO2. Synthesise silver nanoparticles.

CO3. Characterise the nanoparticles with the help of absorbance peak.

CO4. Use instruments like magnetic stirrers used in synthesis.

CO5. Record absorbance values using instruments like colorimeter or UV spectrophotometer.

CO6. Derive and verify Beer-Lambert law.

Catalogue Description

This course imparts the basic understanding of nanoparticles synthesis. It enables the students to synthesise nanoparticles like zinc oxide and silver nanoparticles. The course also introduces the Beer-Lambert law, and its verification with the help of either a colorimeter or a UV spectrophotometer.

Course Content

30 lecture

List of Experiments

- 1. Synthesis of ZnO nanoparticles.
- 2. Preparation of Silvernanoparticles.

(diverse nanoparticles can be prepared by various routes)

3. Verification of Beer-Lambert law using nano-particles (above prepared nano-particles may be used for thestudy).

(Dependingupontheavailabilityofinfrastructurefacilities,instructormayencouragethestudents topreparebimetallicnano-particles,etc.andcharacterizedthem,studytheirvariouspropertieslike magnetism, adsorption,etc.)

Recommended/Reference Books

1. Pradeep T., A text book of nanoscience and nanotechnology, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012 edition.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of Experiment	Lab Record/Quizzes/ Viva-Voce	Attendance	End Term PracticalExamina tion
Weightage (%)	20	20	10	50

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Synthesise zinc oxide nanoparticles.	PO5
CO2	Synthesise silver nanoparticles.	PO5
CO3	Characterise the nanoparticles with the help of absorbance peak.	PO5, PO4
CO4	Use instruments like magnetic stirrers used in synthesis.	PO1, PO5, PSO2
CO5	Record absorbance values using instruments like colorimeter or UV spectrophotometer.	PO2, PO4, PSO1, PO6
CO6	Derive and verify Beer-Lambert law.	PO1, PO4, PO6

Course	Course	Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	Demonstra te interdiscip linary approach	Learning of fundamen tal concepts and instrumen tation technique s	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	nding of impact of chemical s on the	Fostering communi cation skills PO8	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsib ilities PO10	coherent understa nding of theoretic	iate the techniq ues for the qualitat	Learn proble m solvin g appro ach PSO3	Apply principl es ofchem istry to address societal proble ms
Code	Title	FOI	FO2	PO5	r04	FOS	FOO	FO/	F08	F09	FOID	F301	F302	1303	F304
68A	Introducti on of Nanoche mistry and Applicati ons Practicals	1	2		3	3	2					1	1		
1=weakly	y mapped; 2	2= modera	itely mapp	ed; 3=stron	gly mappe										
		DOA	DO2	DO4	DO5		•	e and Cours			11 DCO			22	DCO4
CO CO1	PO1	PO2	PO3	PO4		PO6	PO7 I	PO8 P	O9 PO 1	0 PO	11 PSO	1 PSO 2	2 PSC	55	PSO4
CO1 CO2					3 3										
CO2 CO3				3	3								_		
CO4		3			3							3			
CO5		3		3	-	3				_	3	-			
CO6	3			3		3									
				1	1=lightly m	apped	2= moder	ately mappe	d 3=	strongly r	napped			I	

BSCH310A	Green Processes of Chemistry	L	Т	Р	С
Version 2.0		4	0	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

On completion of this course, the students will be able to understand

- 1. Green chemistry and itsprinciples and processes in laboratoryreactions.
- 2. Green synthesis and reactions.
- 3. Green chemistry for sustainablesolutions.
- 4. Principles of green chemistry.
- 5. Design of chemical reactions/chemical synthesis using green chemistry principles.

Course Outcomes

By the end of this course, students will be able to:

CO1: Understand the twelve principles of green chemistry and will build the basic understanding of toxicity, hazard and risk associated with chemical substances.

CO2: Understand stoichiometric calculations and relate them to green chemistry metrics. They will learn about atom economy and how it is different from percentageyield.

CO3: Learn to design safer chemical, products and processes that are less toxic than current alternatives. Hence, they will understand the meaning of inherently safer design for accident prevention and the principle "what you don't have can't harmyou"

CO4: Understand benefits of use of catalyst and bio catalyst, use of renewable feed stock which helps in energy efficiency and protection of environment, renewable energy sources, and importance of reactions in various greensolvents.

CO5: Appreciate the use of green chemistry reactions in problem solving skills, critical thinking and valuable skills to innovate and find out solution to environmental problems. Thus the students are able to realize that chemistry can be used to solve rather than cause environmentalproblems.

CO6:Analyze the green methods to increase productivity and ensure sustainability with absolute zero waste.

Catalog Description

Climate change and degradation of environment is a common global issue and sustainable development goals emphasize on reduction in pollution so as ensure better health, better sanitation and clean environment for all. Chemicals released from different industries as well as from chemical/ pharmaceutical labs add on to contaminants concentration in the environment. It is imperative to teach students the philosophy of green chemistry and how it can be helpful to reduce environmental pollution. Success stories and real world cases also motivate them to practice green chemistry. These days customers are demanding to know about a product: Is it green? Does it contribute to global warming? Was it made from non-renewable resources?

Students have many career opportunities as " green" is the path to success.

Course Content

UNIT I

Introduction to Green Chemistry

Basic introduction and explaining goals of Green Chemistry. Limitations/Obstacles in the pursuit of the goals of Green Chemistry

UNIT II

PrinciplesofGreenChemistryandDesigningaChemicalsynthesis **20 Lectures**

Twelveprinciples of Green Chemistry with their explanations and examples and special emphasis on Designing a Green Synthesis using these principles (Prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products, Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and eliminationreactions).

UNIT III

Green Synthesis / Reactions

Green Synthesis of adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis).

1. Microwaveassistedreactionsinwater:(HofmannElimination,methylbenzoatetobenzoicaci d, oxidation of toluene and alcohols) and reactions in organic solvents (Diels-Alder reaction and Decarboxylationreaction).

Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic 2. alternative to Iodine)

3. Surfactants for carbon dioxide – replacing smog producing and ozone depleting solvents with CO₂ for precision cleaning and dry cleaning ofgarments.

4. Designing of Environmentally safe marineantifoulant.

An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic 5. acid) made fromcorn.

Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification for 6. production of no Trans-Fats andOils

UNIT IV

Future Trends in Green Chemistry

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solvent less reactions; co crystal controlled solid state synthesis(C2S3); Green chemistry in sustainabledevelopment.

15 Lectures

15 Lectures

10 Lectures

Recommended Books/References:

1. Ahluwalia, V.K., Kidwai, M.R. *New Trendsin Green Chemistry*, Anamalaya Publishers (2005).

2. Anastas, P.T.& Warner, J.K, Green Chemistry-

TheoryandPractical,OxfordUniversityPress (1998).

3. Matlack, A.S. *Introduction to Green Chemistry*, Marcel Dekker(2001).

4. Cann, M.C.and Connely, M.E. Real-World cases in Green Chemistry, ACS(2000).

5. Ryan, M.A. and Tinnesand, M. *Introduction to Green Chemistry*, American Chemical Society, (2002).

6. Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, Second Edition, 2010.

odes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/A ssignm	Attenda nce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
	ent				
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the twelve principles of green chemistry and will build the basic understanding of toxicity, hazard and risk of chemicalsubstances.	PO1, PSO1
CO2	Understand stoichiometric calculations and relate them to green chemistry metrics. They will learn about atom economy and how it	PO1
CO3	Learn to design safer chemical, products and processes that are less toxic, than current alternatives. Hence, they will understand the	PO7, PSO1,
CO4	Understand benefits of use of catalyst and bio catalyst, use of renewable feed stock which helps in energy efficiency and	PO7, PSO4
CO5	Appreciate the use of green chemistry reactions in problem solving skills, critical thinking, and valuable skills to innovate and find out	PO2, PO7, PSO4
CO6	Analyze the green methods to increase productivity and ensure sustainability with absolute zero waste.	PO7, PSO4

		Enhance	Develop	Demonstr	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ment in	ment of	ate	of	ion	g	nding of	communi	1	y to deal	tic and	iate the	proble	princip
		Advanc	critical,	interdisci	fundame	towards	capabilit	impact	cation	aware	with	coherent	techniq	m	les
		ed	logical	plinary	ntal	researc	y to	of	skills	ness	professio	understa	ues for	solvin	ofchem
		Scientifi	and	approach	concepts	h and	work	chemical		and	nal	nding of	the	g	istry to
		с	innovati		and	develop	indepen	s on the		digital	responsib	theoretic	qualita	appro	address
		knowled	ve		instrume	ment	dently as	environ		literac	ilities	al and	tive	ach	societa
		ge about	thinking		ntation		well as a	ment		У		practical	and		1
		chemistr			technique		member					concepts	-		proble
		У			S		of the						ative		ms
							diverse						analysi		
							team						s		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Green														
	Proces														
BSCH	ses of	3	1					3				2			2
310A	Chemi														
	stry														
1=weakly	mapped	; 2= mode	rately map	pped; 3=stro	ongly mapp	ed									
						I	Programm	e and Co	urse Mapp	-					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9 PO	10 PC	D11 PS	O1 PSO	D 2 PS	503	PSO4
CO1	3											3			
CO2	3														
CO3							3					3			
CO4							3								3
CO5		3					3								3
CO6							3								3
	·			1=li	ghtly mapp	ed	2= mode	rately map	ped	3=stro	ongly mapp	bed	•		

BSCH360A	Green Processes of Chemistry Practicals	L	Т	Р	С
Version 2.0		4	0	0	4
Total Contact Hours	30				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

On completion of this course, the students will be able to understand

- 1. Green chemistry and itsprinciples and processes in laboratoryreactions.
- 2. Green solvent/ solvent less reactions.
- 3. Design of chemical reactions/chemical synthesis using green chemistry principles.
- 4. Concept of atom economy, catalysts.

Course Outcomes

By the end of this course, students will be able to:

CO1: Understand the twelve principles of green chemistry

CO2: Understand stoichiometric calculations, atom economy and relate them to green chemistry metrics.

CO3: Learn to design safer chemical, products and processes by using green solvents, catalyst, energy efficient processes etc.

CO4: Understand benefits of use of catalyst and bio catalyst, which not only helps in increase in yield but also protects the environment by less usage of reactants.

Catalog Description

It is very important to learn new processes and synthetic tools to prepare novel compounds by doing either solvent less reactions or green solvents or performing reactions in microwaves or sonicatorsso as to promote sustainability. The techniques learnt in laboratories will help students to create/innovate/synthesize new processes and products.

Course Content

30 lecture

(Following is the list of suggestive experiments. However, depending upon available resources, experiments may be added/changes may be incorporated): (six experiments may be conducted)

- 1. Preparation and characterization of nanoparticles of gold using tealeaves.
- 2. Preparation of biodiesel from vegetable/ waste cookingoil.

3. Use of molecular model kit to stimulate the reaction to investigate how the atom economy illustrates GreenChemistry.

4. Reactionslikeaddition,elimination,substitutionandrearrangementmayalsobestudiedforth e calculation of atomeconomy.

- 5. Benzoin condensation using Thiamine Hydrochloride as a catalyst (instead of cyanide).
- 6. Extraction of D-limonene from orange peel using liquid CO2 prepared form dryice.
- 7. Mechanochemical solvent free synthesis of azomethines
- 8. Solvent free, microwave assisted one pot synthesis of phthalocyanine Cu(II)complex.
- 9. Photoreduction of benzophenone to benzopinacol in presence of sunlight.

Recommended Books/References:

1. Anastas, P.T & Warner, J.C. *Green Chemistry: Theory and Practice*, Oxford University Press (1998).

2. Kirchoff, M. & Ryan, M.A. *Greener approaches to undergraduate chemistry experiment*. American Chemical Society, Washington DC(2002).

3. Ryan, M.A. *Introduction to Green Chemistry*, Tinnesand; (Ed), American Chemical Society, Washington DC(2002).

4. Sharma, R.K.; Sidhwani, I.T. and Chaudhari, M.K. I.K. Green Chemistry Experiment: A monograph, International Publishing ISBN 978-93-81141-55-7(2013).

5. Cann, M.C. and Connelly, M. E. *Real world cases in Green Chemistry*, American Chemical Society(2008).

6. Cann, M.C. and Thomas, P.*Realworldcases in Green Chemistry*, American Chemical Society (2008).

7. Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, Second Edition, 2010.

8. Pavia, D. L., Lampman, G.M., Kriz, G.S. & Engel, R.G. *Introduction to Organic Laboratory Techniques: A Microscale and Macro Scale Approach*, W.B.Saunders, 1995. (Note: A candidate has to perform at least eight experiments in the lab.

Anysuitableexperimentmaybeadded.)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct	of	Lab	Attendance	End Term
	Experiment		Record/Quizzes		PracticalExamin
			/ Viva-Voce		ation
Weightage	20		20	10	50
(%)					

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the twelve principles of green chemistry.	PO1, PO7, PSO1,
CO2	Understand stoichiometric calculations, atom economy and relate them to green chemistry metrics.	PO1, PO7, PSO1, PSO4
CO3	Learn to design safer chemical, products and processes by using green solvents, catalyst, energy efficient processes etc.	PO1, PO7, PSO1,
CO4	Understand benefits of use of catalyst and bio catalyst, which not only helps in increase in yield but also protects the environment by less usage of reactants.	PO1, PO7, PSO1,

[]		Enhance	Develop	Demonstr	Learning	Orientat	Acquirin	Understa	Fostering	Ethica	Capabilit	Systema	Apprec	Learn	Apply
		ment in	ment of	ate	of	ion	g	nding of	communi	1	y to deal	tic and	iate the	proble	princip
		Advanc	critical,	interdisci	fundame	towards	capabilit	impact	cation	aware	with	coherent	techniq	m	les
		ed	logical	plinary	ntal	researc	y to	of	skills	ness	professio	understa	ues for	solvin	ofchem
		Scientifi	and	approach	concepts	h and	work	chemical		and	nal	nding of	the	g	istry to
		с	innovati		and	develop	indepen	s on the		digital	responsib	theoretic	qualita	appro	address
		knowled	ve		instrume	ment	dently as	environ		literac	ilities	al and	tive	ach	societa
		ge about	thinking		ntation		well as a	ment		У		practical	and		1
		chemistr			technique		member					concepts	quantit		proble
		У			S		of the						ative		ms
							diverse						analysi		
							team						S		
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	Green														
	Proces														
BSCH	ses of														
360A	Chemi	3						3				3			1
	stry														
	Practi														
1_wooldw	cals	.)_ mode	motoly, mor	made 2-star											
		; 2= 1110de	ratery map	oped; 3=stro	ngry mapp		Programm	e and Co	urse Mapp	inσ					
СО	PO1	PO2	PO3	PO4	PO5	PO6	-		PO9 PO	-	011 PS	O 1 PSC) 2 PS	503	PSO4
CO1	3						3					3		-	
CO2	3						3					3			1
CO3	3						3					3			
CO4	3						3					3			
	-	I		1=li	ghtly mapp	ed	2= mode	rately map	oped	3=stro	ongly mapp	bed	I	I	

SCH332A	Polymer Chemistry	L	Т	Р	С
Version 1.0		3	1	0	4
Total Contact Hours	60				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

1. To use essential descriptions about polymer chemistry, and define related concepts.

2. To evaluate the structure and molecular weight of polymers.

3. To learn and interpret stereochemistry of polymerization.

4. To learn about modern techniques that could be used to identify and characterize any give given polymer.

Course Outcomes

On completion of this course, the students will be able to

CO1. Understand the meaning of polymer and different important terms related to it.

CO2. Explain the kinetics of addition polymerization.

CO3. Learn polymeric structure and property relationship.

CO4. Appreciate the industrial aspects and applications of several different polymers.

CO5. Understand how to determine molecular weight of a given polymer by using several experimental techniques.

CO6. Learn how to identify a given polymer with the help of spectroscopic techniques.

Catalogue Description

The topics included in this course will help students to study the classification and properties related to the polymers. They will learn about polymeric structure and property relationship. They will also study about the different types of molecular weights and their distribution. It will enable them to understand stereochemistry of polymerisation reactions. The course discusses various experimental techniques to identify and characterize polymers. This course also includes detailed study of kinetics and mechanism of the polymerisation process and uses of polymers.

Course Content

Unit I:

Introduction: Polymer, monomer, examples of polymers, biopolymers, classification, polymerization process, degree of polymerization, condensation, addition polymers, kinetics of addition polymerization process.

15 Lectures

Unit II:

Polymeric Structure and Property Relationship: Structure of polymers - Linear, branched, cross linked, and network polymers, molecular weight (number average, weight average, viscosity average) and distribution of molecular weight, polydispersityindex,crystallinityinpolymer,meltingtemperatureandglasstransitiontemperature, Volumetric properties - molar volume, density, Van der Waals volume - Coefficient of linear thermal expansion and volumetric thermal expansion - Pressure volume temperature (PVT) relationship.

Unit III:

Polymerization Chemistry: Industrial methods of polymerization such as a bulk, solution, emulsion, suspension. Stereochemistryofpolymersandstereo-specificpolymerization,Catalysts-theirutilityinpolymers and stereo-specific polymerizations, Catalysts their utility in polymer manufacture, Zieglar-Natta, Metallocene and others.

Unit IV:

Characterization of Polymers: Molecular Weight Determination by Light Scattering, Osmometry, End-Group Analysis, Viscosity, Gel Permeation Chromatography; Application, of FTIR, UV-visible, NMR, and Mass Spectroscopy for Identification ofpolymers.

Text Books

1. D.W. Van Krevelen and P.J. Hoftyzen, "Properties Of Polymer, 3rd Edition ElsevierScientific, Publishing Company Amsterdam - Oxford - Newyork.1990.

2. J.E. Mark Ed.AIP, Physical Properties Of Polymers Hand Book, Williston, Vt,1996.

3. Reaction Engineering of Step Growth Polymerization, S K Gupta and Anil Kumar, Plenum Press, 1987

Reference Books/Materials

1. Odian; George, Principles of Polymerization, McGraw-Hill Book Co., New York(1970).

2. W. Billmeyer, Text book of polymer science, 3rdEdn., 2007, Wiley.

3. J.R.Fried, Polymer Science and Technology, (2005), PHIpublication.

4. Billmeyer Jr.; Fred W., Textbook of Polymer Science, Wiley- Interscience Publishers, New York (1962).

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz/As signme nt	Attendan ce	Mid Term Exam	Presentation/ Assignment/ etc.	End Term Exam
Weightage (%)	10	10	20	10	50

15 Lectures

15 Lectures

15 Lectures

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the meaning of polymer and different important terms related to it.	PO1
CO2	Explain the kinetics of addition polymerization.	PO1, PSO1
CO3	Learn polymeric structure and property relationship.	PO2
CO4	Appreciate the industrial aspects and applications of several different polymers.	PSO1, PO5
CO5	Understand how to determine molecular weight of a given polymer by using several experimental techniques.	PSO1, PO1
CO6	Learn how to identify a given polymer with the help of spectroscopic techniques.	PO4, PSO2

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	te	Learning of fundament al concepts and instrument ation techniques	research and develop	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemicals on the environm ent	Fostering communic ation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsibi lities	Systemat ic and coherent understan ding of theoretic al and practical concepts	ate the techniq ues for the qualitat	proble m solvin g appro ach	Apply principl es ofchemi stry to address societal proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH3 32A	Polym er Chemi stry	3	2		2	2						3	2		
1=weakly	/ mapped	d 2= mode	rately map	oped 3=stron	igly mapped	1									
							0		irse Mappi	0					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 1	PO9 PO	10 PC	011 PSC	D1 PSO	2 PS	03	PSO4
CO1	3														
CO2	3										3				
CO3 CO4	3	3			3						3	2			
CO4 CO5	3				3										
CO3	5			3								3			
		1			ghtly mapp	ed	2= mode	rately map	ped	3=stro	ongly mapp				

BSCH372A	Polymer Chemistry Practicals	L	Т	Р	С
Version 1.0		0	0	4	2
Total Contact Hours	30				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

- 1. To learn the necessary calculations to get the viscosity value from the time of flow.
- 2. To carry out free radical solution polymerisation reactions.
- 3. To understand the theory and protocol of emulsion polymerization.
- 4. To observe and learn common characterizing techniques for polymers.

Course Outcomes

On completion of this course, the students will be able to

CO1. Learn to use Ostwald's viscometer.

CO2. Explain free radical solution polymerization.

CO3. Perform preparation of phenol-formaldehyde resins.

CO4. Understand the bisulphite method to estimate the amount of HCHO in any given solution.

CO5. Learn the working principle of spectroscopic techniques like, FTIR, TGA, and DSC.

CO6. Understand and determine exchange capacity of cation-exchange and anion-exchange resins.

Catalogue Description

This course imparts the basic experiments related to the field of polymer chemistry. It enables the students to calculate the molecular weight of any given polymer. The course helps them in understanding different types of polymerization, like free radical and emulsion polymerization. The course introduces the basic concepts about resins, their synthesis and the determination of their exchange capacities.

Course Content 30 lecture

List of Experiments

1. Free radical solution polymerization of any one: Styrene, methylmethacrylate, methyl acrylate, methacrylic acid (using free radical initiators). (purification of monomer should be taught)

- 2. Preparation of phenol-formaldehyde resins
- 3. Emulsion polymerization of polymethylmethacrylate.

4. Use of viscometer for molecular weight determination – (any known polymer, example: polyvinyl pyrrolidone in water/polyacrylamide in NaNO2solution) by viscometry. (students should be explained regarding principles and use of ubblohde/ostwald viscometer).

- 5. Estimation of amount of HCHO in a given solution by sodium bisulphite method.
- 6. Use of FTIR/TGA/DSC for polymer characterization (may be demonstrated to students)
- 7. Determination of exchange capacity of cation exchange resins and anion exchange resins.

Recommended Books/Reference books

1.P. Munk & T.M. Aminabhavi, *Introduction to Macromolecular Science*, 2nd ed. John Wiley & Sons (2002).

2.M.P. Stevens, Polymer Chemistry: An Introduction 3rd ed. Oxford University Press (2005).

3. L. H. Sperling, *Introduction to Physical Polymer Science*, 4th ed. John Wiley &Sons(2005)

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Conduct of Experiment	Lab Record/Quizzes / Viva-Voce	Attendance	End Term PracticalExamin ation
Weightage (%)	20	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Learn to use instruments for viscosity measurements	PO4, PO6, PSO1
CO2	Explain free radical solution polymerization.	PO1
CO3	Perform preparation of phenol-formaldehyde resins.	PO2, PO6, PSO1
CO4	Understand the bisulphite method to estimate the amount of HCHO in any given solution.	PO6, PO1, PSO2
CO5	Learn the working principle of spectroscopic techniques like, FTIR, TGA, and DSC.	PO1, PO4, PO6
CO6	Understand and determine exchange capacity of cation- exchange and anion-exchange resins.	PO1, PSO1

		Enhance ment in Advance d Scientifi c knowled ge about chemistr y	Develop ment of critical, logical and innovati ve thinking	te	Learning of fundament al concepts and instrument ation techniques	Orientat ion towards research and develop ment	Acquirin g capabilit y to work independ ently as well as a member of the diverse team	Understa nding of impact of chemicals on the environm ent	Fostering communic ation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsibi lities	Systemat ic and coherent understan ding of theoretic al and practical concepts	Appreci ate the techniq ues for the qualitat ive and quantita tive analysis	proble m solvin g appro ach	Apply principl es ofchemi stry to address societal proble ms
Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH3 72A	Polym er Chemi stry Practic als	3	2		2		3					2	2		
1=weakly	y mapped	d2= moder	ately map	ped3=strong	gly mapped										
]	Programm	ne and Cou	ırse Mappi	ng					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 1	PO9 PO	10 PC	D11 PSC	D1 PSO	2 PS	03	PSO4
CO1				3		3									
CO2	3														
CO3		3				3									
CO4	3					3						3			
CO5	3			3		3									
CO6	3										3				
				1=li	ghtly mapp	ed	2 = mode	erately map	ped	3=stro	ongly mapp	ed			

BSCH358A	Research Project	L	Т	Р	C
Version 1.0		0	0	2	6
Pre-requisites/Exposure	Practical exposure				
Co-requisites					

5. To learn how to carry out literature survey

6. To be associated with an area of research/research project and contribute towards domain knowledge.

7. To learn the art of technical report writing

8. To learn the art of verbal communication with the help of modern presentation techniques.

Course Outcomes

On completion of this course, the students will be able to

CO1. Carry out the extensive literature survey.

CO2. Learn to write and present technical reports/articles.

CO3. Learn to analyze various methods and techniques applicable to the topic to study and contribute to domain knowledge.

CO4. Learn to analyze/evaluate the result of the experiment carried out and present the results using data visualization methods.

Catalog Description

1. Students will be divided among faculty members of the Department for the supervision of the research work.

2. In the first week of Semester V, each faculty member will assign a suitable research topic to the students from the selected topics in the areas of chemical sciences.

3. The student will work on the assigned research topic during semesters V and VI in regular consultation with his/her assigned teacher.

4. The student will write a dissertation based on the research work carried out during Semesters V and VI and prepare two copies to be submitted to the office of the Head of the Department duly signed by the student and the supervisor in the sixth week of VI semester or a date decided by the HOD of the department.

5. Before preparing power point presentation and submission of dissertation, each student has to deliver a seminar talk on his/ her research project work on a date fixed by HOD, necessary suggestions has to be incorporated in the final draft of dissertation.

6. The student will make a power point presentation based on the work carried out and mentioned in the dissertation to the board of examiners appointed by the University.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Internal (Interaction of		External		Total
	Student with Supervisor)	Relevance of topic (20)	Presentation (20)	viva (10)	100
Weightage (%)	50	20	20	10	

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Carry out the extensive literature survey.	PO1, PO3
CO2	Learn to write and present technical reports/articles.	PO1, PO5, PO8, PO9
CO3	Learn to analyze various methods and techniques applicable to the topic to study and contribute to domain knowledge.	PO2,PO3,PO4, PSO1, PSO4
CO4	Learn to analyze/evaluate the result of the experiment carried out and present the results using data visualization methods.	PO5, PO6,PSO2 and PSO3

		Enhance ment in Advanc ed Scientifi c knowled ge about chemistr y	ment of critical, logical and innovati ve		Learning of fundame ntal concepts and instrume ntation technique s	Orienta tion towards researc h and develop ment	Acquirin g capabilit y to work indepen dently as well as a member of the diverse team	nding of impact of chemical s on the environ	Fostering communi cation skills	Ethica l aware ness and digital literac y	Capabilit y to deal with professio nal responsib ilities	Systema tic and coherent understa nding of theoretic al and practical concepts	iate the techniq ues for the qualita tive and	probl	princip les
Course Code	Cour se Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
BSCH 358A	Rese arch Proje ct	3	3	3	3	3	3		3	3		3	2	3	3

1=weakly mapped; 2= moderately mapped; 3=strongly mapped

							Program	me and C	Course M	apping					
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PSO 1	PSO 2	PSO3	PSO4
CO1	3		3												
CO2	3				3			3	3						
CO3		3	3	3								3			3
CO4					3	3							2	3	
	1=lightly mapped							derately m	apped	3=	strongly 1	napped			